These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34780504)

  • 1. Coherent detection-based photonic radar for autonomous vehicles under diverse weather conditions.
    Chaudhary S; Wuttisittikulkij L; Saadi M; Sharma A; Al Otaibi S; Nebhen J; Rodriguez DZ; Kumar S; Sharma V; Phanomchoeng G; Chancharoen R
    PLoS One; 2021; 16(11):e0259438. PubMed ID: 34780504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient photonic radar by incorporating MDM-WDM and machine learning classifiers under adverse weather conditions.
    Chaudhary S; Sharma A; Singh K; Khichar S; Malhotra J
    PLoS One; 2024; 19(4):e0300653. PubMed ID: 38557860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave photonic radar system with improved SNR performance utilizing optical resonant amplification and random Fourier coefficient waveforms.
    Liu C; Xie Q; Wang R; Yang J; Ma W; Li W; Wu Y
    Opt Express; 2023 May; 31(10):15537-15552. PubMed ID: 37157653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed coherent microwave photonic radar with a high-precision fiber-optic time and frequency network.
    Wang H; Li S; Xue X; Xiao X; Zheng X
    Opt Express; 2020 Oct; 28(21):31241-31252. PubMed ID: 33115102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction: Coherent detection-based photonic radar for autonomous vehicles under diverse weather conditions.
    PLOS ONE Staff
    PLoS One; 2021; 16(11):e0260799. PubMed ID: 34843600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lightweight Object Detection Ensemble Framework for Autonomous Vehicles in Challenging Weather Conditions.
    Walambe R; Marathe A; Kotecha K; Ghinea G
    Comput Intell Neurosci; 2021; 2021():5278820. PubMed ID: 34659392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A scheme to detect the intensity of dusty weather by applying microwave radars and lidar.
    Gao X; Xie L
    Sci Total Environ; 2023 Feb; 859(Pt 2):160248. PubMed ID: 36403835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MMW Radar-Based Technologies in Autonomous Driving: A Review.
    Zhou T; Yang M; Jiang K; Wong H; Yang D
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33353016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Perception System of Intelligent Ground Vehicles in All Weather Conditions: A Systematic Literature Review.
    Mohammed AS; Amamou A; Ayevide FK; Kelouwani S; Agbossou K; Zioui N
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33203155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic generation of programmable coherent linear frequency modulated signal and its application in X-band radar system.
    Cheng R; Wei W; Xie W; Dong Y
    Opt Express; 2019 Dec; 27(26):37469-37480. PubMed ID: 31878526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Camera-Radar Fusion with an Attention Framework for Autonomous Vehicle Vision in Foggy Weather Conditions.
    Ogunrinde I; Bernadin S
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonics-based coherent wideband linear frequency modulation pulsed signal generation.
    Tong Y; Han D; Cheng R; Liu Z; Xie W; Qin J; Dong Y
    Opt Lett; 2018 Mar; 43(5):1023-1026. PubMed ID: 29489771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Overview of Autonomous Vehicles Sensors and Their Vulnerability to Weather Conditions.
    Vargas J; Alsweiss S; Toker O; Razdan R; Santos J
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.
    Balal N; Pinhasi GA; Pinhasi Y
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27223286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airborne Radar Anti-Jamming Waveform Design Based on Deep Reinforcement Learning.
    Zheng Z; Li W; Zou K
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing.
    Li R; Li W; Ding M; Wen Z; Li Y; Zhou L; Yu S; Xing T; Gao B; Luan Y; Zhu Y; Guo P; Tian Y; Liang X
    Opt Express; 2017 Jun; 25(13):14334-14340. PubMed ID: 28789019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel RF-source-free reconfigurable microwave photonic radar.
    Zhang X; Zeng H; Yang J; Yin Z; Sun Q; Li W
    Opt Express; 2020 Apr; 28(9):13650-13661. PubMed ID: 32403835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of ADAS Radars with Electronic Warfare Perspective.
    Cemil A; Ünlü M
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal-to-noise ratio improvement of photonic time-stretch coherent radar enabling high-sensitivity ultrabroad W-band operation.
    Qian N; Zou W; Zhang S; Chen J
    Opt Lett; 2018 Dec; 43(23):5869-5872. PubMed ID: 30499962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of laser phase noise on the ranging accuracy of a cooperative MIMO FMCW photonic radar system.
    Kumari A; Kumar A
    Appl Opt; 2023 Dec; 62(36):9523-9535. PubMed ID: 38108777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.