These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 34780818)

  • 1. Critical strategies for recycling process of graphite from spent lithium-ion batteries: A review.
    Liu J; Shi H; Hu X; Geng Y; Yang L; Shao P; Luo X
    Sci Total Environ; 2022 Apr; 816():151621. PubMed ID: 34780818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances and challenges in anode graphite recycling from spent lithium-ion batteries.
    Niu B; Xiao J; Xu Z
    J Hazard Mater; 2022 Oct; 439():129678. PubMed ID: 36104906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives.
    Zhang L; Zhang Y; Xu Z; Zhu P
    Environ Sci Technol; 2023 Sep; 57(36):13270-13291. PubMed ID: 37610371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opportunity and challenges in recovering and functionalizing anode graphite from spent lithium-ion batteries: A review.
    Gao Y; Zhang S; Lin S; Li Z; Chen Y; Wang C
    Environ Res; 2024 Apr; 247():118216. PubMed ID: 38242420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Recycling of Spent Lithium-Ion Batteries: Crucial Flotation for the Separation of Cathode and Anode Materials.
    Ma X; Ge P; Wang L; Sun W; Bu Y; Sun M; Yang Y
    Molecules; 2023 May; 28(10):. PubMed ID: 37241821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling and Reusing of Graphite from Retired Lithium-ion Batteries: A Review.
    Tian H; Graczyk-Zajac M; Kessler A; Weidenkaff A; Riedel R
    Adv Mater; 2024 Mar; 36(13):e2308494. PubMed ID: 38102959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration and utilization of graphite from the spent lithium-ion batteries by modified low-temperature sulfuric acid roasting.
    Zhang Z; Zhu X; Hou H; Tang L; Xiao J; Zhong Q
    Waste Manag; 2022 Aug; 150():30-38. PubMed ID: 35792439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery.
    He K; Zhang ZY; Zhang FS
    Waste Manag; 2021 Apr; 124():283-292. PubMed ID: 33640668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques.
    Zhang T; He Y; Wang F; Ge L; Zhu X; Li H
    Waste Manag; 2014 Jun; 34(6):1051-8. PubMed ID: 24472715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them.
    Zhang W; Xu C; He W; Li G; Huang J
    Waste Manag Res; 2018 Feb; 36(2):99-112. PubMed ID: 29241402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient purification and high-quality regeneration of graphite from spent lithium-ion batteries by surfactant-assisted methanesulfonic acid.
    Liu G; Ma L; Xi X; Nie Z
    Waste Manag; 2024 Apr; 178():105-114. PubMed ID: 38387254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries.
    Li J; Wang G; Xu Z
    J Hazard Mater; 2016 Jan; 302():97-104. PubMed ID: 26448495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in pretreating technology for recycling valuable metals from spent lithium-ion batteries.
    Zhang G; Yuan X; He Y; Wang H; Zhang T; Xie W
    J Hazard Mater; 2021 Mar; 406():124332. PubMed ID: 33229267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
    Roy JJ; Cao B; Madhavi S
    Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphite Recycling from Spent Lithium-Ion Batteries.
    Rothermel S; Evertz M; Kasnatscheew J; Qi X; Grützke M; Winter M; Nowak S
    ChemSusChem; 2016 Dec; 9(24):3473-3484. PubMed ID: 27860314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Storage Application of CaO/Graphite Nanocomposite Powder Obtained from Waste Eggshells and Used Lithium-Ion Batteries as a Sustainable Development Approach.
    Adaikalam K; Teli AM; Marimuthu KP; Ramesh S; Lee H; Kim HS; Kim HS
    Nanomaterials (Basel); 2024 Jun; 14(13):. PubMed ID: 38998734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Current Process for the Recycling of Spent Lithium Ion Batteries.
    Zhou LF; Yang D; Du T; Gong H; Luo WB
    Front Chem; 2020; 8():578044. PubMed ID: 33344413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile separation and regeneration of LiFePO
    Zhong X; Mao X; Qin W; Zeng H; Zhao G; Han J
    Waste Manag; 2023 Feb; 156():236-246. PubMed ID: 36495701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green Synergy Conversion of Waste Graphite in Spent Lithium-Ion Batteries to GO and High-Performance EG Anode Material.
    Yang S; Yang G; Lan M; Zou J; Zhang X; Lai F; Xiang D; Wang H; Liu K; Li Q
    Small; 2024 May; 20(22):e2305785. PubMed ID: 38143289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium recovery and solvent reuse from electrolyte of spent lithium-ion battery.
    Xu R; Lei S; Wang T; Yi C; Sun W; Yang Y
    Waste Manag; 2023 Jul; 167():135-140. PubMed ID: 37262939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.