These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34780893)

  • 1. Product inhibition kinetics determinations - Substrate interaction affinity and enzymatic kinetics using one quantitative FRET assay.
    Liu Y; Zhang F; Jiang L; Perry JJP; Zhao Z; Liao J
    Int J Biol Macromol; 2021 Dec; 193(Pt B):1481-1487. PubMed ID: 34780893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal calibration Förster resonance energy transfer assay: a real-time approach for determining protease kinetics.
    Jiang L; Liu Y; Song Y; Saavedra AN; Pan S; Xiang W; Liao J
    Sensors (Basel); 2013 Apr; 13(4):4553-70. PubMed ID: 23567524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isopeptidase Kinetics Determination by a Real Time and Sensitive qFRET Approach.
    Liu Y; Shen Y; Song Y; Xu L; P Perry JJ; Liao J
    Biomolecules; 2021 Apr; 11(5):. PubMed ID: 33946350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Förster resonance energy transfer analysis for kinetic determinations of SUMO-specific protease.
    Liu Y; Song Y; Madahar V; Liao J
    Anal Biochem; 2012 Mar; 422(1):14-21. PubMed ID: 22244808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative FRET (Förster Resonance Energy Transfer) analysis for SENP1 protease kinetics determination.
    Liu Y; Liao J
    J Vis Exp; 2013 Feb; (72):e4430. PubMed ID: 23463095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new trend to determine biochemical parameters by quantitative FRET assays.
    Liao JY; Song Y; Liu Y
    Acta Pharmacol Sin; 2015 Dec; 36(12):1408-15. PubMed ID: 26567729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel robust quantitative Förster resonance energy transfer assay for protease SENP2 kinetics determination against its all natural substrates.
    Liu Y; Shen Y; Zheng S; Liao J
    Mol Biosyst; 2015 Dec; 11(12):3407-14. PubMed ID: 26486594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering pre-SUMO4 as efficient substrate of SENP2.
    Liu Y; Kieslich CA; Morikis D; Liao J
    Protein Eng Des Sel; 2014 Apr; 27(4):117-26. PubMed ID: 24671712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative FRET (qFRET) Technology for the Determination of Protein-Protein Interaction Affinity in Solution.
    Liao J; Madahar V; Dang R; Jiang L
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific substrate recognition and thioester intermediate determinations in ubiquitin and SUMO conjugation cascades revealed by a high-sensitive FRET assay.
    Jiang L; Saavedra AN; Way G; Alanis J; Kung R; Li J; Xiang W; Liao J
    Mol Biosyst; 2014 Apr; 10(4):778-86. PubMed ID: 24452848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FRET-Based Assays to Determine Calpain Activity.
    McCartney CE; Davies PL
    Methods Mol Biol; 2019; 1915():39-55. PubMed ID: 30617794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of Protease Activities Using Fluorogenic Substrates.
    Santamaria S; Nagase H
    Methods Mol Biol; 2018; 1731():107-122. PubMed ID: 29318548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. trans-Protease activity and structural insights into the active form of the alphavirus capsid protease.
    Aggarwal M; Dhindwal S; Kumar P; Kuhn RJ; Tomar S
    J Virol; 2014 Nov; 88(21):12242-53. PubMed ID: 25100849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein interaction affinity determination by quantitative FRET technology.
    Song Y; Rodgers VG; Schultz JS; Liao J
    Biotechnol Bioeng; 2012 Nov; 109(11):2875-83. PubMed ID: 22711490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of SUMO1 and ATP affinity for the SUMO E1by quantitative FRET technology.
    Wiryawan H; Dan K; Etuale M; Shen Y; Liao J
    Biotechnol Bioeng; 2015 Apr; 112(4):652-8. PubMed ID: 25333792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-throughput FRET-based assay for determination of Atg4 activity.
    Li M; Chen X; Ye QZ; Vogt A; Yin XM
    Autophagy; 2012 Mar; 8(3):401-12. PubMed ID: 22302004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential bioluminescence resonance energy transfer-fluorescence resonance energy transfer-based ratiometric protease assays with fusion proteins of firefly luciferase and red fluorescent protein.
    Branchini BR; Rosenberg JC; Ablamsky DM; Taylor KP; Southworth TL; Linder SJ
    Anal Biochem; 2011 Jul; 414(2):239-45. PubMed ID: 21453669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous assay of protein tyrosine phosphatases based on fluorescence resonance energy transfer.
    Nishikata M; Yoshimura Y; Deyama Y; Suzuki K
    Biochimie; 2006 Jul; 88(7):879-86. PubMed ID: 16540231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A ratiometric fluorescent system for carboxylesterase detection with AIE dots as FRET donors.
    Wu Y; Huang S; Zeng F; Wang J; Yu C; Huang J; Xie H; Wu S
    Chem Commun (Camb); 2015 Aug; 51(64):12791-4. PubMed ID: 26165151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair.
    Hsu YY; Liu YN; Wang W; Kao FJ; Kung SH
    Biochem Biophys Res Commun; 2007 Feb; 353(4):939-45. PubMed ID: 17207462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.