These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 34781184)

  • 1. Improving the performance of machine learning models for early warning of harmful algal blooms using an adaptive synthetic sampling method.
    Kim JH; Shin JK; Lee H; Lee DH; Kang JH; Cho KH; Lee YG; Chon K; Baek SS; Park Y
    Water Res; 2021 Dec; 207():117821. PubMed ID: 34781184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning-Based Early Warning Level Prediction for Cyanobacterial Blooms Using Environmental Variable Selection and Data Resampling.
    Kim JH; Lee H; Byeon S; Shin JK; Lee DH; Jang J; Chon K; Park Y
    Toxics; 2023 Nov; 11(12):. PubMed ID: 38133356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning approach for early warning of cyanobacterial bloom outbreaks in a freshwater reservoir.
    Park Y; Lee HK; Shin JK; Chon K; Kim S; Cho KH; Kim JH; Baek SS
    J Environ Manage; 2021 Jun; 288():112415. PubMed ID: 33774562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in algal bloom detection and prediction technology using machine learning.
    Park J; Patel K; Lee WH
    Sci Total Environ; 2024 Aug; 938():173546. PubMed ID: 38810749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current status and prospects of algal bloom early warning technologies: A Review.
    Xiao X; Peng Y; Zhang W; Yang X; Zhang Z; Ren B; Zhu G; Zhou S
    J Environ Manage; 2024 Jan; 349():119510. PubMed ID: 37951110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning based marine water quality prediction for coastal hydro-environment management.
    Deng T; Chau KW; Duan HF
    J Environ Manage; 2021 Apr; 284():112051. PubMed ID: 33515839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea.
    Yi HS; Park S; An KG; Kwak KC
    Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30248912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forecasting freshwater cyanobacterial harmful algal blooms for Sentinel-3 satellite resolved U.S. lakes and reservoirs.
    Schaeffer BA; Reynolds N; Ferriby H; Salls W; Smith D; Johnston JM; Myer M
    J Environ Manage; 2024 Jan; 349():119518. PubMed ID: 37944321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-optimization of training dataset improves forecasting of cyanobacterial bloom by machine learning.
    Kim J; Jung W; An J; Oh HJ; Park J
    Sci Total Environ; 2023 Mar; 866():161398. PubMed ID: 36621510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting fish kills and toxic blooms in an intensive mariculture site in the Philippines using a machine learning model.
    Yñiguez AT; Ottong ZJ
    Sci Total Environ; 2020 Mar; 707():136173. PubMed ID: 31972913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four Major South Korea's Rivers Using Deep Learning Models.
    Lee S; Lee D
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29937531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel single-parameter approach for forecasting algal blooms.
    Xiao X; He J; Huang H; Miller TR; Christakos G; Reichwaldt ES; Ghadouani A; Lin S; Xu X; Shi J
    Water Res; 2017 Jan; 108():222-231. PubMed ID: 27847147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea.
    Park Y; Cho KH; Park J; Cha SM; Kim JH
    Sci Total Environ; 2015 Jan; 502():31-41. PubMed ID: 25241206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The magnitude and drivers of harmful algal blooms in China's lakes and reservoirs: A national-scale characterization.
    Huang J; Zhang Y; Arhonditsis GB; Gao J; Chen Q; Peng J
    Water Res; 2020 Aug; 181():115902. PubMed ID: 32505885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A real time data driven algal bloom risk forecast system for mariculture management.
    Guo J; Dong Y; Lee JHW
    Mar Pollut Bull; 2020 Dec; 161(Pt B):111731. PubMed ID: 33130398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using convolutional neural network for predicting cyanobacteria concentrations in river water.
    Pyo J; Park LJ; Pachepsky Y; Baek SS; Kim K; Cho KH
    Water Res; 2020 Nov; 186():116349. PubMed ID: 32882452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating temporal decomposition and data-driven approaches for predicting coastal harmful algal blooms.
    Yan Z; Alamdari N
    J Environ Manage; 2024 Jul; 364():121463. PubMed ID: 38878579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early warning of algal blooms based on the optimization support vector machine regression in a typical tributary bay of the Three Gorges Reservoir, China.
    Xia J; Zeng J
    Environ Geochem Health; 2022 Dec; 44(12):4719-4733. PubMed ID: 35267125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Machine Learning for eutrophication analysis and algal bloom prediction in an urban river: A 10-year study of the Han River, South Korea.
    Ly QV; Nguyen XC; Lê NC; Truong TD; Hoang TT; Park TJ; Maqbool T; Pyo J; Cho KH; Lee KS; Hur J
    Sci Total Environ; 2021 Nov; 797():149040. PubMed ID: 34311376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multivariate Chain-Bernoulli-based prediction model for cyanobacteria algal blooms at multiple stations in South Korea.
    Kim KB; Uranchimeg S; Kwon HH
    Environ Pollut; 2022 Nov; 313():120078. PubMed ID: 36075336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.