These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34781214)

  • 1. Curriculum learning with Hindsight Experience Replay for sequential object manipulation tasks.
    Manela B; Biess A
    Neural Netw; 2022 Jan; 145():260-270. PubMed ID: 34781214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex Robotic Manipulation via Graph-Based Hindsight Goal Generation.
    Bing Z; Brucker M; Morin FO; Li R; Su X; Huang K; Knoll A
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7863-7876. PubMed ID: 34181552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic Manipulation in Dynamic Scenarios via Bounding-Box-Based Hindsight Goal Generation.
    Bing Z; Alvarez E; Cheng L; Morin FO; Li R; Su X; Huang K; Knoll A
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):5037-5050. PubMed ID: 34762592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addressing Hindsight Bias in Multigoal Reinforcement Learning.
    Bai C; Wang L; Wang Y; Wang Z; Zhao R; Bai C; Liu P
    IEEE Trans Cybern; 2023 Jan; 53(1):392-405. PubMed ID: 34495860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curriculum Reinforcement Learning Based on K-Fold Cross Validation.
    Lin Z; Lai J; Chen X; Cao L; Wang J
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sampling Rate Decay in Hindsight Experience Replay for Robot Control.
    Vecchietti LF; Seo M; Har D
    IEEE Trans Cybern; 2022 Mar; 52(3):1515-1526. PubMed ID: 32452788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to train a self-driving vehicle: On the added value (or lack thereof) of curriculum learning and replay buffers.
    Mahmoud S; Billing E; Svensson H; Thill S
    Front Artif Intell; 2023; 6():1098982. PubMed ID: 36762255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AHEGC: Adaptive Hindsight Experience Replay With Goal-Amended Curiosity Module for Robot Control.
    Zeng H; Zhang P; Li F; Lin C; Zhou J
    IEEE Trans Neural Netw Learn Syst; 2024 Nov; 35(11):16602-16615. PubMed ID: 37527323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path Planning for Multi-Arm Manipulators Using Deep Reinforcement Learning: Soft Actor-Critic with Hindsight Experience Replay.
    Prianto E; Kim M; Park JH; Bae JH; Kim JS
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33086774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomous Driving of Mobile Robots in Dynamic Environments Based on Deep Deterministic Policy Gradient: Reward Shaping and Hindsight Experience Replay.
    Park M; Park C; Kwon NK
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative Object Transportation Using Curriculum-Based Deep Reinforcement Learning.
    Eoh G; Park TH
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The limitations of automatically generated curricula for continual learning.
    Kravchenko A; Cusack R
    PLoS One; 2024; 19(4):e0290706. PubMed ID: 38625859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model.
    Johnson A; Redish AD
    Neural Netw; 2005 Nov; 18(9):1163-71. PubMed ID: 16198539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous reinforcement learning with experience replay.
    Wawrzyński P; Tanwani AK
    Neural Netw; 2013 May; 41():156-67. PubMed ID: 23237972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning to Learn: How to Continuously Teach Humans and Machines.
    Singh P; Li Y; Sikarwar A; Lei W; Gao D; Talbot MB; Sun Y; Shou MZ; Kreiman G; Zhang M
    IEEE Int Conf Comput Vis Workshops; 2023 Oct; 2023():11674-11685. PubMed ID: 38784111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curriculum-Based Asymmetric Multi-Task Reinforcement Learning.
    Huang H; Ye D; Shen L; Liu W
    IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7258-7269. PubMed ID: 36417748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time reinforcement learning by sequential Actor-Critics and experience replay.
    Wawrzyński P
    Neural Netw; 2009 Dec; 22(10):1484-97. PubMed ID: 19523786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Paced Prioritized Curriculum Learning With Coverage Penalty in Deep Reinforcement Learning.
    Ren Z; Dong D; Li H; Chen C; Zhipeng Ren ; Daoyi Dong ; Huaxiong Li ; Chunlin Chen ; Dong D; Li H; Chen C; Ren Z
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2216-2226. PubMed ID: 29771673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Critical Period for Robust Curriculum-Based Deep Reinforcement Learning of Sequential Action in a Robot Arm.
    de Kleijn R; Sen D; Kachergis G
    Top Cogn Sci; 2022 Apr; 14(2):311-326. PubMed ID: 35005844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.