These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34781432)

  • 1. Evolutional deep neural network.
    Du Y; Zaki TA
    Phys Rev E; 2021 Oct; 104(4-2):045303. PubMed ID: 34781432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active training of physics-informed neural networks to aggregate and interpolate parametric solutions to the Navier-Stokes equations.
    Arthurs CJ; King AP
    J Comput Phys; 2021 Aug; 438():None. PubMed ID: 34345054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space.
    Kavvas ML; Ercan A
    Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations.
    Goraya S; Sobh N; Masud A
    Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Theory of Functional Connections: A New Method for Estimating the Solutions of Partial Differential Equations.
    Leake C; Mortari D
    Mach Learn Knowl Extr; 2020 Mar; 2(1):37-55. PubMed ID: 32478283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Approaches to Surrogates for Solving the Diffusion Equation for Mechanistic Real-World Simulations.
    Toledo-MarĂ­n JQ; Fox G; Sluka JP; Glazier JA
    Front Physiol; 2021; 12():667828. PubMed ID: 34248661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global potential, topology, and pattern selection in a noisy stabilized Kuramoto-Sivashinsky equation.
    Chen YC; Shi C; Kosterlitz JM; Zhu X; Ao P
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23227-23234. PubMed ID: 32917812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Second-Order Network Structure Based on Gradient-Enhanced Physics-Informed Neural Networks for Solving Parabolic Partial Differential Equations.
    Sun K; Feng X
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High precision compact numerical approximation in exponential form for the system of 2D quasilinear elliptic BVPs on a discrete irrational region.
    Mohanty RK; Setia N; Khurana G; Manchanda G
    MethodsX; 2022; 9():101790. PubMed ID: 35958096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Combination of Deep Neural Networks and Physics to Solve the Inverse Problem of Burger's Equation.
    Alkhadhr S; Almekkawy M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4465-4468. PubMed ID: 34892210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the Hopf functional equation for turbulence: Duhamel principle and dynamical scaling.
    Ohkitani K
    Phys Rev E; 2020 Jan; 101(1-1):013104. PubMed ID: 32069662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in-depth numerical study of the two-dimensional Kuramoto-Sivashinsky equation.
    Kalogirou A; Keaveny EE; Papageorgiou DT
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20140932. PubMed ID: 26345218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinism, well-posedness, and applications of the ultrahyperbolic wave equation in spacekime.
    Wang Y; Shen Y; Deng D; Dinov ID
    Partial Differ Equ Appl Math; 2022 Jun; 5():. PubMed ID: 36159725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-similarity in turbulence and its applications.
    Ohkitani K
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210048. PubMed ID: 35527638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LordNet: An efficient neural network for learning to solve parametric partial differential equations without simulated data.
    Huang X; Shi W; Gao X; Wei X; Zhang J; Bian J; Yang M; Liu TY
    Neural Netw; 2024 Aug; 176():106354. PubMed ID: 38723308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mean solutions for the Kuramoto-Sivashinsky equation with incoming boundary conditions.
    Kitahara Y; Okamura M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056210. PubMed ID: 15600731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical deep learning of multiscale differential equation time-steppers.
    Liu Y; Kutz JN; Brunton SL
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210200. PubMed ID: 35719073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boundary Control of 2-D Burgers' PDE: An Adaptive Dynamic Programming Approach.
    Talaei B; Jagannathan S; Singler J
    IEEE Trans Neural Netw Learn Syst; 2018 Aug; 29(8):3669-3681. PubMed ID: 28866603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Weight Strategy of Physics-Informed Neural Networks for the 2D Navier-Stokes Equations.
    Li S; Feng X
    Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved data-free surrogate model for solving partial differential equations using deep neural networks.
    Chen X; Chen R; Wan Q; Xu R; Liu J
    Sci Rep; 2021 Sep; 11(1):19507. PubMed ID: 34593943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.