BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34781448)

  • 1. Thermodynamic calculations using reverse Monte Carlo.
    Agrahari G; Chatterjee A
    Phys Rev E; 2021 Oct; 104(4-1):044129. PubMed ID: 34781448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic calculations using reverse Monte Carlo: Simultaneously tuning multiple short-range order parameters for 2D lattice adsorption problem.
    Haque S; Chatterjee A
    J Chem Phys; 2023 Sep; 159(10):. PubMed ID: 37694750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A probabilistic microkinetic modeling framework for catalytic surface reactions.
    Kumar A; Chatterjee A
    J Chem Phys; 2023 Jan; 158(2):024109. PubMed ID: 36641399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speed-up of Monte Carlo simulations by preparing starting off-lattice structures that are close to equilibrium.
    Agrahari G; Chatterjee A
    J Chem Phys; 2020 Jan; 152(4):044102. PubMed ID: 32007045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lattice Monte Carlo simulation of the FePt alloy using a first-principles renormalized four-body interaction.
    Misumi Y; Masatsuji S; Sahara R; Ishii S; Ohno K
    J Chem Phys; 2008 Jun; 128(23):234702. PubMed ID: 18570514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the collinearity in short-range order parameters for lattice configurations arising from topological constraints.
    Chatterjee A
    J Chem Phys; 2024 May; 160(20):. PubMed ID: 38775242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of strontium tellurite glass, anti-glass and crystalline phases by high-energy X-ray diffraction, reverse Monte Carlo and Rietveld analysis.
    Kaur R; Khanna A; ; Dippel AC; Gutowski O; González F; González-Barriuso M
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2020 Feb; 76(Pt 1):108-121. PubMed ID: 32831246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of Short-Range Order of Amorphous GeTe Upon Structural Relaxation Obtained by TEM Diffractometry and RMC Methods.
    Stenz C; Pries J; Surta TW; Gaultois MW; Wuttig M
    Adv Sci (Weinh); 2023 Dec; 10(36):e2304323. PubMed ID: 37908162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The First Eighteen Years of Reverse Monte Carlo Modelling, a workshop held in Budapest, Hungary (28-30th September 2006).
    Keen DA; Pusztai L
    J Phys Condens Matter; 2007 Aug; 19(33):330301. PubMed ID: 21694123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular modeling of porous carbons using the hybrid reverse Monte Carlo method.
    Jain SK; Pellenq RJ; Pikunic JP; Gubbins KE
    Langmuir; 2006 Nov; 22(24):9942-8. PubMed ID: 17106983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iterative reverse Monte Carlo and molecular statics for improved atomic structure modeling: a case study of zinc oxide grown by atomic layer deposition.
    Gettler RC; Koenig HD; Young MJ
    Phys Chem Chem Phys; 2021 Dec; 23(46):26417-26427. PubMed ID: 34792514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometric study and modeling of the thermodynamic properties of SrO-Al
    Stolyarova VL; Vorozhtcov VA; Lopatin SI; Selyutin AA; Shugurov SM; Shilov AL; Stolyarov VA; Almjashev VI
    Rapid Commun Mass Spectrom; 2023 Mar; 37(5):e9459. PubMed ID: 36539963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metropolis Monte Carlo calculations of DNA structure using internal coordinates and NMR distance restraints: an alternative method for generating a high-resolution solution structure.
    Ulyanov NB; Schmitz U; James TL
    J Biomol NMR; 1993 Sep; 3(5):547-68. PubMed ID: 8219740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RMC_POT: a computer code for reverse Monte Carlo modeling the structure of disordered systems containing molecules of arbitrary complexity.
    Gereben O; Pusztai L
    J Comput Chem; 2012 Nov; 33(29):2285-91. PubMed ID: 22782785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature and composition dependence of short-range order and entropy, and statistics of bond length: the semiconductor alloy (GaN)(1-x)(ZnO)(x).
    Liu J; Pedroza LS; Misch C; Fernández-Serra MV; Allen PB
    J Phys Condens Matter; 2014 Jul; 26(27):274204. PubMed ID: 24935774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First example of multi-scale reverse Monte Carlo modeling for small-angle scattering experimental data using reverse mapping from coarse-grained particles to atoms.
    Hagita K; McGreevy RL; Arai T; Inui M; Matsuda K; Tamura K
    J Phys Condens Matter; 2010 Oct; 22(40):404215. PubMed ID: 21386576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-graining of polyisoprene melts using inverse Monte Carlo and local density potentials.
    Shahidi N; Chazirakis A; Harmandaris V; Doxastakis M
    J Chem Phys; 2020 Mar; 152(12):124902. PubMed ID: 32241142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying chemical short-range order in metallic alloys.
    Sheriff K; Cao Y; Smidt T; Freitas R
    Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2322962121. PubMed ID: 38870054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure.
    Kumara LS; Sakata O; Kohara S; Yang A; Song C; Kusada K; Kobayashi H; Kitagawa H
    Phys Chem Chem Phys; 2016 Nov; 18(44):30622-30629. PubMed ID: 27787531
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.