These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34781508)

  • 21. Measurement-based quantum heat engine in a multilevel system.
    Anka MF; de Oliveira TR; Jonathan D
    Phys Rev E; 2021 Nov; 104(5-1):054128. PubMed ID: 34942804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum correlated heat engine with spin squeezing.
    Altintas F; Hardal AÜ; Müstecaplıoglu ÖE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032102. PubMed ID: 25314390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum Otto cycle efficiency on coupled qudits.
    Ivanchenko EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032124. PubMed ID: 26465443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum correlated heat engine in XY chain with Dzyaloshinskii-Moriya interactions.
    Asadian M; Ahadpour S; Mirmasoudi F
    Sci Rep; 2022 Apr; 12(1):7081. PubMed ID: 35490156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement-based quantum Otto engine with a two-spin system coupled by anisotropic interaction: Enhanced efficiency at finite times.
    Purkait C; Biswas A
    Phys Rev E; 2023 May; 107(5-1):054110. PubMed ID: 37329072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential.
    Xiao Y; Li K; He J; Wang J
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir.
    Singh V; Müstecaplıoğlu ÖE
    Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of a strongly coupled quantum heat engine-Computing bath observables from the hierarchy of pure states.
    Boettcher V; Hartmann R; Beyer K; Strunz WT
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38436445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracting work from a single heat bath via vanishing quantum coherence.
    Scully MO; Zubairy MS; Agarwal GS; Walther H
    Science; 2003 Feb; 299(5608):862-4. PubMed ID: 12511655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance of discrete heat engines and heat pumps in finite time.
    Feldmann T; Kosloff R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):4774-90. PubMed ID: 11031518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Otto Engine: Classical and Quantum Approach.
    Peña FJ; Negrete O; Cortés N; Vargas P
    Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Work and efficiency fluctuations in a quantum Otto cycle with idle levels.
    Anka MF; de Oliveira TR; Jonathan D
    Phys Rev E; 2024 Jun; 109(6-1):064129. PubMed ID: 39021004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-Markovian thermal operations boosting the performance of quantum heat engines.
    Ptaszyński K
    Phys Rev E; 2022 Jul; 106(1-1):014114. PubMed ID: 35974499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum thermodynamic cycles and quantum heat engines.
    Quan HT; Liu YX; Sun CP; Nori F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031105. PubMed ID: 17930197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropy-assisted thermodynamic advantage of a local-spin quantum thermal machine.
    Purkait C; Chand S; Biswas A
    Phys Rev E; 2024 Apr; 109(4-1):044128. PubMed ID: 38755864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extracting work from random collisions: A model of a quantum heat engine.
    Shaghaghi V; Palma GM; Benenti G
    Phys Rev E; 2022 Mar; 105(3-1):034101. PubMed ID: 35428074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Action and Entropy in Heat Engines: An Action Revision of the Carnot Cycle.
    Kennedy IR; Hodzic M
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The second law, Maxwell's demon, and work derivable from quantum heat engines.
    Kieu TD
    Phys Rev Lett; 2004 Oct; 93(14):140403. PubMed ID: 15524772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines.
    Mohanta S; Saha M; Venkatesh BP; Agarwalla BK
    Phys Rev E; 2023 Jul; 108(1-1):014118. PubMed ID: 37583162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.