These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 34781516)
1. Lattice Boltzmann and Jones matrix calculations for the determination of the director field structure in self-propelling nematic droplets. Bahr C Phys Rev E; 2021 Oct; 104(4-1):044703. PubMed ID: 34781516 [TBL] [Abstract][Full Text] [Related]
2. Lattice Boltzmann study of chemically-driven self-propelled droplets. Fadda F; Gonnella G; Lamura A; Tiribocchi A Eur Phys J E Soft Matter; 2017 Dec; 40(12):112. PubMed ID: 29256179 [TBL] [Abstract][Full Text] [Related]
5. Orientational instability and spontaneous rotation of active nematic droplets. Morozov M; Michelin S Soft Matter; 2019 Oct; 15(39):7814-7822. PubMed ID: 31517379 [TBL] [Abstract][Full Text] [Related]
6. Theoretical model of chirality-induced helical self-propulsion. Yamamoto T; Sano M Phys Rev E; 2018 Jan; 97(1-1):012607. PubMed ID: 29448380 [TBL] [Abstract][Full Text] [Related]
7. Magnetic-field-driven director configuration transitions in radial nematic liquid crystal droplets. Ettinger S; Slaughter CG; Parra SH; Kikkawa JM; Collings PJ; Yodh AG Phys Rev E; 2023 Aug; 108(2-1):024704. PubMed ID: 37723717 [TBL] [Abstract][Full Text] [Related]
8. Lattice Boltzmann algorithm to simulate isotropic-nematic emulsions. Sulaiman N; Marenduzzo D; Yeomans JM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041708. PubMed ID: 17155079 [TBL] [Abstract][Full Text] [Related]
9. Self-propelled motion switching in nematic liquid crystal droplets in aqueous surfactant solutions. Suga M; Suda S; Ichikawa M; Kimura Y Phys Rev E; 2018 Jun; 97(6-1):062703. PubMed ID: 30011466 [TBL] [Abstract][Full Text] [Related]
13. Hydrodynamics of a confined active Belousov-Zhabotinsky droplet. Chaithanya KVS; Shenoy SA; Dayal P Phys Rev E; 2022 Dec; 106(6-2):065103. PubMed ID: 36671180 [TBL] [Abstract][Full Text] [Related]
14. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. Li Q; Kang QJ; Francois MM; Hu AJ Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921 [TBL] [Abstract][Full Text] [Related]
15. Horizontal transportation of a Maltese cross pattern in nematic liquid crystalline droplets under a temperature gradient. Yoshioka J; Fukao K Phys Rev E; 2019 Feb; 99(2-1):022702. PubMed ID: 30934222 [TBL] [Abstract][Full Text] [Related]
16. Analysis of different self-propulsion types of oil droplets based on electrostatic interaction effects. Noguchi M; Yamada M; Sawada H RSC Adv; 2022 Jun; 12(29):18354-18362. PubMed ID: 35799924 [TBL] [Abstract][Full Text] [Related]
17. Self-propulsion of a droplet induced by combined diffusiophoresis and Marangoni effects. Wang Y; Zheng L; Li G Electrophoresis; 2024 Mar; ():. PubMed ID: 38528332 [TBL] [Abstract][Full Text] [Related]
18. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet. Suematsu NJ; Saikusa K; Nagata T; Izumi S Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577 [TBL] [Abstract][Full Text] [Related]
19. Shape of an isotropic droplet in a nematic liquid crystal: the role of surfactant. Lishchuk SV; Care CM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011702. PubMed ID: 15324067 [TBL] [Abstract][Full Text] [Related]
20. Collective and convective effects compete in patterns of dissolving surface droplets. Laghezza G; Dietrich E; Yeomans JM; Ledesma-Aguilar R; Kooij ES; Zandvliet HJ; Lohse D Soft Matter; 2016 Jun; 12(26):5787-96. PubMed ID: 27270609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]