These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 34781586)
1. Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling. Bailey RT; Bieger K; Flores L; Tomer M Sci Total Environ; 2022 Jan; 802():149962. PubMed ID: 34781586 [TBL] [Abstract][Full Text] [Related]
2. The impact of extensive agricultural water drainage on the hydrology of the Kleine Nete watershed, Belgium. Yimer EA; Riakhi FE; Bailey RT; Nossent J; van Griensven A Sci Total Environ; 2023 Aug; 885():163903. PubMed ID: 37146800 [TBL] [Abstract][Full Text] [Related]
3. Assessing controls on selenium fate and transport in watersheds using the SWAT model. Neupane P; Bailey RT; Tavakoli-Kivi S Sci Total Environ; 2020 Oct; 738():140318. PubMed ID: 32806359 [TBL] [Abstract][Full Text] [Related]
4. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs. Teshager AD; Gassman PW; Secchi S; Schoof JT; Misgna G Environ Manage; 2016 Apr; 57(4):894-911. PubMed ID: 26616430 [TBL] [Abstract][Full Text] [Related]
5. Assessment of hydrology and nutrient losses in a changing climate in a subsurface-drained watershed. Mehan S; Aggarwal R; Gitau MW; Flanagan DC; Wallace CW; Frankenberger JR Sci Total Environ; 2019 Oct; 688():1236-1251. PubMed ID: 31726554 [TBL] [Abstract][Full Text] [Related]
6. Investigating the controlling factors on salinity in soil, groundwater, and river water in a semi-arid agricultural watershed using SWAT-Salt. Hosseini P; Bailey RT Sci Total Environ; 2022 Mar; 810():152293. PubMed ID: 34896504 [TBL] [Abstract][Full Text] [Related]
7. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications. Sun Z; Lotz T; Chang NB J Environ Manage; 2017 Dec; 204(Pt 1):92-101. PubMed ID: 28863340 [TBL] [Abstract][Full Text] [Related]
8. Impact of land cover and land use change on runoff characteristics. Sajikumar N; Remya RS J Environ Manage; 2015 Sep; 161():460-468. PubMed ID: 25575849 [TBL] [Abstract][Full Text] [Related]
9. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin. Narula KK; Gosain AK Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999 [TBL] [Abstract][Full Text] [Related]
10. Simulating the influence of integrated crop-livestock systems on water yield at watershed scale. Pérez-Gutiérrez JD; Kumar S J Environ Manage; 2019 Jun; 239():385-394. PubMed ID: 30925408 [TBL] [Abstract][Full Text] [Related]
11. Hydrograph separation of subsurface tile discharge. Schilling KE; Jones CS Environ Monit Assess; 2019 Mar; 191(4):231. PubMed ID: 30895458 [TBL] [Abstract][Full Text] [Related]
12. Improving nitrate load simulation of the SWAT model in an extensively tile-drained watershed. Kim J; Her Y; Bhattarai R; Jeong H Sci Total Environ; 2023 Dec; 904():166331. PubMed ID: 37595899 [TBL] [Abstract][Full Text] [Related]
13. Quantifying the contribution of tile drainage to basin-scale water yield using analytical and numerical models. Schilling KE; Gassman PW; Arenas-Amado A; Jones CS; Arnold J Sci Total Environ; 2019 Mar; 657():297-309. PubMed ID: 30543979 [TBL] [Abstract][Full Text] [Related]
14. Enhanced streamflow prediction with SWAT using support vector regression for spatial calibration: A case study in the Illinois River watershed, U.S. Yuan L; Forshay KJ PLoS One; 2021; 16(4):e0248489. PubMed ID: 33844687 [TBL] [Abstract][Full Text] [Related]
15. Quantifying the impact of climate extremes on salt mobilization and loading in non-developed, high-desert landscapes using SWAT. Henson E; Bailey RT J Contam Hydrol; 2023 Jan; 252():104107. PubMed ID: 36396527 [TBL] [Abstract][Full Text] [Related]
16. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules. Lee S; Yeo IY; Lang MW; Sadeghi AM; McCarty GW; Moglen GE; Evenson GR J Environ Manage; 2018 Oct; 223():37-48. PubMed ID: 29886149 [TBL] [Abstract][Full Text] [Related]
17. Quantifying climate change impacts on future water resources and salinity transport in a high semi-arid watershed. Balakrishnan JV; Bailey RT; Jeong J; Park S; Abitew T J Contam Hydrol; 2024 Feb; 261():104289. PubMed ID: 38242065 [TBL] [Abstract][Full Text] [Related]
18. Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data. Arenas Amado A; Schilling KE; Jones CS; Thomas N; Weber LJ Environ Monit Assess; 2017 Sep; 189(9):426. PubMed ID: 28766121 [TBL] [Abstract][Full Text] [Related]
19. Integrating terrestrial and aquatic processes toward watershed scale modeling of dissolved organic carbon fluxes. Du X; Zhang X; Mukundan R; Hoang L; Owens EM Environ Pollut; 2019 Jun; 249():125-135. PubMed ID: 30884391 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of soil-vegetation interaction effects on water fluxes revealed by the proxy of model parameter combinations. Lotz T; Sun Z; Xue B Environ Monit Assess; 2023 Jan; 195(2):283. PubMed ID: 36624240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]