BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34781586)

  • 1. Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling.
    Bailey RT; Bieger K; Flores L; Tomer M
    Sci Total Environ; 2022 Jan; 802():149962. PubMed ID: 34781586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of extensive agricultural water drainage on the hydrology of the Kleine Nete watershed, Belgium.
    Yimer EA; Riakhi FE; Bailey RT; Nossent J; van Griensven A
    Sci Total Environ; 2023 Aug; 885():163903. PubMed ID: 37146800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing controls on selenium fate and transport in watersheds using the SWAT model.
    Neupane P; Bailey RT; Tavakoli-Kivi S
    Sci Total Environ; 2020 Oct; 738():140318. PubMed ID: 32806359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs.
    Teshager AD; Gassman PW; Secchi S; Schoof JT; Misgna G
    Environ Manage; 2016 Apr; 57(4):894-911. PubMed ID: 26616430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of hydrology and nutrient losses in a changing climate in a subsurface-drained watershed.
    Mehan S; Aggarwal R; Gitau MW; Flanagan DC; Wallace CW; Frankenberger JR
    Sci Total Environ; 2019 Oct; 688():1236-1251. PubMed ID: 31726554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the controlling factors on salinity in soil, groundwater, and river water in a semi-arid agricultural watershed using SWAT-Salt.
    Hosseini P; Bailey RT
    Sci Total Environ; 2022 Mar; 810():152293. PubMed ID: 34896504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications.
    Sun Z; Lotz T; Chang NB
    J Environ Manage; 2017 Dec; 204(Pt 1):92-101. PubMed ID: 28863340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of land cover and land use change on runoff characteristics.
    Sajikumar N; Remya RS
    J Environ Manage; 2015 Sep; 161():460-468. PubMed ID: 25575849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.
    Narula KK; Gosain AK
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating the influence of integrated crop-livestock systems on water yield at watershed scale.
    Pérez-Gutiérrez JD; Kumar S
    J Environ Manage; 2019 Jun; 239():385-394. PubMed ID: 30925408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrograph separation of subsurface tile discharge.
    Schilling KE; Jones CS
    Environ Monit Assess; 2019 Mar; 191(4):231. PubMed ID: 30895458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving nitrate load simulation of the SWAT model in an extensively tile-drained watershed.
    Kim J; Her Y; Bhattarai R; Jeong H
    Sci Total Environ; 2023 Dec; 904():166331. PubMed ID: 37595899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the contribution of tile drainage to basin-scale water yield using analytical and numerical models.
    Schilling KE; Gassman PW; Arenas-Amado A; Jones CS; Arnold J
    Sci Total Environ; 2019 Mar; 657():297-309. PubMed ID: 30543979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced streamflow prediction with SWAT using support vector regression for spatial calibration: A case study in the Illinois River watershed, U.S.
    Yuan L; Forshay KJ
    PLoS One; 2021; 16(4):e0248489. PubMed ID: 33844687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the impact of climate extremes on salt mobilization and loading in non-developed, high-desert landscapes using SWAT.
    Henson E; Bailey RT
    J Contam Hydrol; 2023 Jan; 252():104107. PubMed ID: 36396527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules.
    Lee S; Yeo IY; Lang MW; Sadeghi AM; McCarty GW; Moglen GE; Evenson GR
    J Environ Manage; 2018 Oct; 223():37-48. PubMed ID: 29886149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying climate change impacts on future water resources and salinity transport in a high semi-arid watershed.
    Balakrishnan JV; Bailey RT; Jeong J; Park S; Abitew T
    J Contam Hydrol; 2024 Feb; 261():104289. PubMed ID: 38242065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data.
    Arenas Amado A; Schilling KE; Jones CS; Thomas N; Weber LJ
    Environ Monit Assess; 2017 Sep; 189(9):426. PubMed ID: 28766121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating terrestrial and aquatic processes toward watershed scale modeling of dissolved organic carbon fluxes.
    Du X; Zhang X; Mukundan R; Hoang L; Owens EM
    Environ Pollut; 2019 Jun; 249():125-135. PubMed ID: 30884391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of soil-vegetation interaction effects on water fluxes revealed by the proxy of model parameter combinations.
    Lotz T; Sun Z; Xue B
    Environ Monit Assess; 2023 Jan; 195(2):283. PubMed ID: 36624240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.