BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 34781638)

  • 1. Fructose in the kidney: from physiology to pathology.
    Nakagawa T; Kang DH
    Kidney Res Clin Pract; 2021 Dec; 40(4):527-541. PubMed ID: 34781638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous Fructose Metabolism Could Explain the Warburg Effect and the Protection of SGLT2 Inhibitors in Chronic Kidney Disease.
    Nakagawa T; Sanchez-Lozada LG; Andres-Hernando A; Kojima H; Kasahara M; Rodriguez-Iturbe B; Bjornstad P; Lanaspa MA; Johnson RJ
    Front Immunol; 2021; 12():694457. PubMed ID: 34220855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal Tubular Handling of Glucose and Fructose in Health and Disease.
    Vallon V; Nakagawa T
    Compr Physiol; 2021 Dec; 12(1):2995-3044. PubMed ID: 34964123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fructose Production and Metabolism in the Kidney.
    Nakagawa T; Johnson RJ; Andres-Hernando A; Roncal-Jimenez C; Sanchez-Lozada LG; Tolan DR; Lanaspa MA
    J Am Soc Nephrol; 2020 May; 31(5):898-906. PubMed ID: 32253274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fructose contributes to the Warburg effect for cancer growth.
    Nakagawa T; Lanaspa MA; Millan IS; Fini M; Rivard CJ; Sanchez-Lozada LG; Andres-Hernando A; Tolan DR; Johnson RJ
    Cancer Metab; 2020; 8():16. PubMed ID: 32670573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: A pair of valves for fine-tuning of glucose metabolism in human cancer.
    Yi M; Ban Y; Tan Y; Xiong W; Li G; Xiang B
    Mol Metab; 2019 Feb; 20():1-13. PubMed ID: 30553771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the Warburg effect: historical dogma versus current understanding.
    Vaupel P; Multhoff G
    J Physiol; 2021 Mar; 599(6):1745-1757. PubMed ID: 33347611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect.
    Zhang S; Yang C; Yang Z; Zhang D; Ma X; Mills G; Liu Z
    Am J Cancer Res; 2015; 5(4):1265-80. PubMed ID: 26101696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect.
    Zhang S; Yang C; Yang Z; Zhang D; Ma X; Mills G; Liu Z
    Am J Cancer Res; 2015; 5(3):928-44. PubMed ID: 26045978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Warburg effect increases steady-state ROS condition in cancer cells through decreasing their antioxidant capacities (anticancer effects of 3-bromopyruvate through antagonizing Warburg effect).
    El Sayed SM; Mahmoud AA; El Sawy SA; Abdelaal EA; Fouad AM; Yousif RS; Hashim MS; Hemdan SB; Kadry ZM; Abdelmoaty MA; Gabr AG; Omran FM; Nabo MM; Ahmed NS
    Med Hypotheses; 2013 Nov; 81(5):866-70. PubMed ID: 24071366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes.
    Ghashghaeinia M; Köberle M; Mrowietz U; Bernhardt I
    Cell Cycle; 2019 Jun; 18(12):1316-1334. PubMed ID: 31154896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming the Warburg Effect: Is it the key to survival in sepsis?
    Bar-Or D; Carrick M; Tanner A; Lieser MJ; Rael LT; Brody E
    J Crit Care; 2018 Feb; 43():197-201. PubMed ID: 28915394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VDAC-Tubulin, an Anti-Warburg Pro-Oxidant Switch.
    Maldonado EN
    Front Oncol; 2017; 7():4. PubMed ID: 28168164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. APC-Cdh1 Regulates Neuronal Apoptosis Through Modulating Glycolysis and Pentose-Phosphate Pathway After Oxygen-Glucose Deprivation and Reperfusion.
    Li Z; Zhang B; Yao W; Zhang C; Wan L; Zhang Y
    Cell Mol Neurobiol; 2019 Jan; 39(1):123-135. PubMed ID: 30460429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy metabolism in cancer cells: how to explain the Warburg and Crabtree effects?
    Dell' Antone P
    Med Hypotheses; 2012 Sep; 79(3):388-92. PubMed ID: 22770870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic adaptation of the renal carbohydrate metabolism. I. Effects of starvation on the gluconeogenic and glycolytic fluxes in the proximal and distal renal tubules.
    García-Salguero L; Lupiáñez JA
    Mol Cell Biochem; 1988 Oct; 83(2):167-78. PubMed ID: 2849053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy.
    Lanaspa MA; Ishimoto T; Cicerchi C; Tamura Y; Roncal-Jimenez CA; Chen W; Tanabe K; Andres-Hernando A; Orlicky DJ; Finol E; Inaba S; Li N; Rivard CJ; Kosugi T; Sanchez-Lozada LG; Petrash JM; Sautin YY; Ejaz AA; Kitagawa W; Garcia GE; Bonthron DT; Asipu A; Diggle CP; Rodriguez-Iturbe B; Nakagawa T; Johnson RJ
    J Am Soc Nephrol; 2014 Nov; 25(11):2526-38. PubMed ID: 24876114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver.
    Lanaspa MA; Sanchez-Lozada LG; Choi YJ; Cicerchi C; Kanbay M; Roncal-Jimenez CA; Ishimoto T; Li N; Marek G; Duranay M; Schreiner G; Rodriguez-Iturbe B; Nakagawa T; Kang DH; Sautin YY; Johnson RJ
    J Biol Chem; 2012 Nov; 287(48):40732-44. PubMed ID: 23035112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Warburg effect in Gynecologic cancers.
    Kobayashi Y; Banno K; Kunitomi H; Takahashi T; Takeda T; Nakamura K; Tsuji K; Tominaga E; Aoki D
    J Obstet Gynaecol Res; 2019 Mar; 45(3):542-548. PubMed ID: 30511455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.