These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34781676)

  • 1. Continuous Cell-Free Replication and Evolution of Artificial Genomic DNA in a Compartmentalized Gene Expression System.
    Okauchi H; Ichihashi N
    ACS Synth Biol; 2021 Dec; 10(12):3507-3517. PubMed ID: 34781676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-replication of circular DNA by a self-encoded DNA polymerase through rolling-circle replication and recombination.
    Sakatani Y; Yomo T; Ichihashi N
    Sci Rep; 2018 Aug; 8(1):13089. PubMed ID: 30166584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro evolution of phi29 DNA polymerases through compartmentalized gene expression and rolling-circle replication.
    Sakatani Y; Mizuuchi R; Ichihashi N
    Protein Eng Des Sel; 2019 Dec; 32(11):481-487. PubMed ID: 32533140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells.
    van Nies P; Westerlaken I; Blanken D; Salas M; Mencía M; Danelon C
    Nat Commun; 2018 Apr; 9(1):1583. PubMed ID: 29679002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transcription and translation-coupled DNA replication system using rolling-circle replication.
    Sakatani Y; Ichihashi N; Kazuta Y; Yomo T
    Sci Rep; 2015 May; 5():10404. PubMed ID: 26013404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimization of Elements for Isothermal DNA Replication by an Evolutionary Approach.
    Okauchi H; Sakatani Y; Otsuka K; Ichihashi N
    ACS Synth Biol; 2020 Jul; 9(7):1771-1780. PubMed ID: 32674580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutually Orthogonal DNA Replication Systems In Vivo.
    Arzumanyan GA; Gabriel KN; Ravikumar A; Javanpour AA; Liu CC
    ACS Synth Biol; 2018 Jul; 7(7):1722-1729. PubMed ID: 29969238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of a Thermophilic Strand-Displacing Polymerase Using High-Temperature Isothermal Compartmentalized Self-Replication.
    Milligan JN; Shroff R; Garry DJ; Ellington AD
    Biochemistry; 2018 Aug; 57(31):4607-4619. PubMed ID: 29629759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution of polymerase function by compartmentalized self-replication.
    Ghadessy FJ; Ong JL; Holliger P
    Proc Natl Acad Sci U S A; 2001 Apr; 98(8):4552-7. PubMed ID: 11274352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro evolution of phi29 DNA polymerase using isothermal compartmentalized self replication technique.
    Povilaitis T; Alzbutas G; Sukackaite R; Siurkus J; Skirgaila R
    Protein Eng Des Sel; 2016 Dec; 29(12):617-628. PubMed ID: 27672049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-free cloning using phi29 DNA polymerase.
    Hutchison CA; Smith HO; Pfannkoch C; Venter JC
    Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17332-6. PubMed ID: 16286637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exponential propagation of large circular DNA by reconstitution of a chromosome-replication cycle.
    Su'etsugu M; Takada H; Katayama T; Tsujimoto H
    Nucleic Acids Res; 2017 Nov; 45(20):11525-11534. PubMed ID: 29036468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the Determination of the Templating Nucleotide at the Initiation of φ29 DNA Replication.
    Del Prado A; Lázaro JM; Longás E; Villar L; de Vega M; Salas M
    J Biol Chem; 2015 Nov; 290(45):27138-27145. PubMed ID: 26400085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific recognition of parental terminal protein by DNA polymerase for initiation of protein-primed DNA replication.
    Gonzalez-Huici V; Lázaro JM; Salas M; Hermoso JM
    J Biol Chem; 2000 May; 275(19):14678-83. PubMed ID: 10799555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the Okazaki fragment distributions along single long DNAs replicated by the bacteriophage T4 proteins.
    Chastain PD; Makhov AM; Nossal NG; Griffith JD
    Mol Cell; 2000 Oct; 6(4):803-14. PubMed ID: 11090619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription.
    Mohsen MG; Kool ET
    Acc Chem Res; 2016 Nov; 49(11):2540-2550. PubMed ID: 27797171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rolling-circle amplification of viral DNA genomes using phi29 polymerase.
    Johne R; Müller H; Rector A; van Ranst M; Stevens H
    Trends Microbiol; 2009 May; 17(5):205-11. PubMed ID: 19375325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rolling circle enzymatic replication of a complex multi-crossover DNA nanostructure.
    Lin C; Wang X; Liu Y; Seeman NC; Yan H
    J Am Chem Soc; 2007 Nov; 129(46):14475-81. PubMed ID: 17963390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A link among DNA replication, recombination, and gene expression revealed by genetic and genomic analysis of TEBICHI gene of Arabidopsis thaliana.
    Inagaki S; Nakamura K; Morikami A
    PLoS Genet; 2009 Aug; 5(8):e1000613. PubMed ID: 19696887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compartmentalized Self-Replication for Evolution of a DNA Polymerase.
    Abil Z; Ellington AD
    Curr Protoc Chem Biol; 2018 Mar; 10(1):1-17. PubMed ID: 30040233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.