These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34782025)

  • 1. Mono-specific algal diets shape microbial networking in the gut of the sea urchin Tripneustes gratilla elatensis.
    Masasa M; Kushmaro A; Kramarsky-Winter E; Shpigel M; Barkan R; Golberg A; Kribus A; Shashar N; Guttman L
    Anim Microbiome; 2021 Nov; 3(1):79. PubMed ID: 34782025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial Succession Underlies Microbial Contribution to Food Digestion in the Gut of an Algivorous Sea Urchin.
    Masasa M; Kushmaro A; Nguyen D; Chernova H; Shashar N; Guttman L
    Microbiol Spectr; 2023 Jun; 11(3):e0051423. PubMed ID: 37097162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do genes lie? Mitochondrial capture masks the Red Sea collector urchin's true identity (Echinodermata: Echinoidea: Tripneustes).
    Bronstein O; Kroh A; Haring E
    Mol Phylogenet Evol; 2016 Nov; 104():1-13. PubMed ID: 27475495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Composition, Diversity and Predictive Metabolic Profiles of Bacteria Associated With the Gut Digesta of Five Sea Urchins in Luhuitou Fringing Reef (Northern South China Sea).
    Yao Q; Yu K; Liang J; Wang Y; Hu B; Huang X; Chen B; Qin Z
    Front Microbiol; 2019; 10():1168. PubMed ID: 31191489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sea Cucumber Intestinal Regeneration Reveals Deterministic Assembly of the Gut Microbiome.
    Weigel BL
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32358014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survivorship and feeding preferences among size classes of outplanted sea urchins, Tripneustes gratilla, and possible use as biocontrol for invasive alien algae.
    Westbrook CE; Ringang RR; Cantero SM; ; Toonen RJ
    PeerJ; 2015; 3():e1235. PubMed ID: 26401450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexibility and resilience of great tit (Parus major) gut microbiomes to changing diets.
    Bodawatta KH; Freiberga I; Puzejova K; Sam K; Poulsen M; Jønsson KA
    Anim Microbiome; 2021 Feb; 3(1):20. PubMed ID: 33602335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic consequences of various fruit-based diets in a generalist insect species.
    Olazcuaga L; Baltenweck R; Leménager N; Maia-Grondard A; Claudel P; Hugueney P; Foucaud J
    Elife; 2023 Jun; 12():. PubMed ID: 37278030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disentangling the Relative Roles of Vertical Transmission, Subsequent Colonizations, and Diet on Cockroach Microbiome Assembly.
    Renelies-Hamilton J; Germer K; Sillam-Dussès D; Bodawatta KH; Poulsen M
    mSphere; 2021 Jan; 6(1):. PubMed ID: 33408228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Component and Content of Lipid Classes and Phospholipid Molecular Species of Eggs and Body of the Vietnamese Sea Urchin
    Dinh TK; Nguyen PH; Phuong DL; Dang TP; Quan PM; Dao TK; Grigorchuk VP; Long PQ
    Molecules; 2023 Apr; 28(9):. PubMed ID: 37175131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression across tissues, sex, and life stages in the sea urchin Tripneustes gratilla [Toxopneustidae, Odontophora, Camarodonta].
    Láruson ÁJ; Coppard SE; Pespeni MH; Reed FA
    Mar Genomics; 2018 Oct; 41():12-18. PubMed ID: 30064945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complete mitochondrial genome of the tropical sea urchin
    Wang H; Zhang X; Yao J; Gang D; Zeng Y; Mao M; Jiang J
    Mitochondrial DNA B Resour; 2024; 9(1):15-19. PubMed ID: 38187012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in sea urchin (Mesocentrotus nudus) microbiota and their potential contributions to host according to barren severity.
    Park JY; Jo JW; An YJ; Lee JJ; Kim BS
    NPJ Biofilms Microbiomes; 2023 Oct; 9(1):83. PubMed ID: 37907565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covariation of the Fecal Microbiome with Diet in Nonpasserine Birds.
    Xiao K; Fan Y; Zhang Z; Shen X; Li X; Liang X; Bi R; Wu Y; Zhai J; Dai J; Irwin DM; Chen W; Shen Y
    mSphere; 2021 May; 6(3):. PubMed ID: 33980682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the Dietary Protein and Carbohydrate Ratio on Gut Microbiomes in Dogs of Different Body Conditions.
    Li Q; Lauber CL; Czarnecki-Maulden G; Pan Y; Hannah SS
    mBio; 2017 Jan; 8(1):. PubMed ID: 28119466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of bindin in the pantropical sea urchin Tripneustes: comparisons to bindin of other genera.
    Zigler KS; Lessios HA
    Mol Biol Evol; 2003 Feb; 20(2):220-31. PubMed ID: 12598689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metagenomic assessment of body surface bacterial communities of the sea urchin, Tripneustes gratilla.
    Brink M; Rhode C; Macey BM; Christison KW; Roodt-Wilding R
    Mar Genomics; 2019 Oct; 47():100675. PubMed ID: 30962029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trophic niches reflect compositional differences in microbiota among Caribbean sea urchins.
    Rodríguez-Barreras R; Tosado-Rodríguez EL; Godoy-Vitorino F
    PeerJ; 2021; 9():e12084. PubMed ID: 34540373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Light Color on the Growth, Feeding, Digestion, and Antioxidant Enzymes of
    Zhao X; Guo Y; Li J; Ma Z; Yu G; Qin C
    Biology (Basel); 2024 Jan; 13(2):. PubMed ID: 38392284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic diets containing a single polysaccharide disrupt gut microbial community structure and microbial interaction networks in the American cockroach.
    Dockman R; Ottesen E
    bioRxiv; 2024 May; ():. PubMed ID: 38798626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.