These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34782102)

  • 1. Aggregation-induced emission materials for protein fibrils imaging.
    Patel K; Shah SKH; Prabhakaran P
    Prog Mol Biol Transl Sci; 2021; 185():113-136. PubMed ID: 34782102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrogating amyloid aggregation with aggregation-induced emission fluorescence probes.
    Zhou Y; Hua J; Ding D; Tang Y
    Biomaterials; 2022 Jul; 286():121605. PubMed ID: 35653878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring Early-Stage Protein Aggregation by an Aggregation-Induced Emission Fluorogen.
    Kumar M; Hong Y; Thorn DC; Ecroyd H; Carver JA
    Anal Chem; 2017 Sep; 89(17):9322-9329. PubMed ID: 28795815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing and modulation of amyloid fibrils by photo-switchable organic dots.
    Uddin A; Roy B; Jose GP; Hossain SS; Hazra P
    Nanoscale; 2020 Aug; 12(32):16805-16818. PubMed ID: 32761038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An α-Cyanostilbene Derivative for the Enhanced Detection and Imaging of Amyloid Fibril Aggregates.
    Marzano NR; Wray KM; Johnston CL; Paudel BP; Hong Y; van Oijen A; Ecroyd H
    ACS Chem Neurosci; 2020 Dec; 11(24):4191-4202. PubMed ID: 33226775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatible Fluorescent Probe for Selective Detection of Amyloid Fibrils.
    Das A; Dutta T; Gadhe L; Koner AL; Saraogi I
    Anal Chem; 2020 Aug; 92(15):10336-10341. PubMed ID: 32635722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Investigation of the kinetics of insulin amyloid fibrils formation].
    Sulatskaia AI; Volova EA; Komissarchik IaIu; Snigirevskaia ES; Maskevich AA; Drobchenko EA; Kuznetsova IM; Turoverov KK
    Tsitologiia; 2013; 55(11):809-14. PubMed ID: 25509136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fluorescent Sensor for Quantitative Super-Resolution Imaging of Amyloid Fibril Assembly.
    Kaur A; Adair LD; Ball SR; New EJ; Sunde M
    Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202112832. PubMed ID: 34935241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AIE-Based Dynamic
    Fan C; Wang YL; Zhao PJ; Qu HQ; Su YX; Li C; Zhu MQ
    Bioconjug Chem; 2020 Oct; 31(10):2303-2311. PubMed ID: 33002360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrogating Amyloid Aggregates using Fluorescent Probes.
    Aliyan A; Cook NP; Martí AA
    Chem Rev; 2019 Dec; 119(23):11819-11856. PubMed ID: 31675223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of Thioflavin-T binding to amyloid fibrils.
    Biancalana M; Koide S
    Biochim Biophys Acta; 2010 Jul; 1804(7):1405-12. PubMed ID: 20399286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid oligomers: spectroscopic characterization of amyloidogenic protein states.
    Lindgren M; Hammarström P
    FEBS J; 2010 Mar; 277(6):1380-8. PubMed ID: 20148961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophilic AIE-Active Tetraarylethenes for Fluorescence Sensing and Super-Resolution Imaging of Amyloid Fibrils from Hen Egg White Lysozyme.
    Fan C; Chen ZQ; Li C; Wang YL; Yu Q; Zhu MQ
    ACS Appl Mater Interfaces; 2021 May; 13(17):19625-19632. PubMed ID: 33886270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundamentals and exploration of aggregation-induced emission molecules for amyloid protein aggregation.
    Tang Y; Zhang D; Zhang Y; Liu Y; Cai L; Plaster E; Zheng J
    J Mater Chem B; 2022 Apr; 10(14):2280-2295. PubMed ID: 34724699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and Monitoring of Amyloid Fibrillation Using a Fluorescence "Switch-On" Probe.
    Pradhan N; Jana D; Ghorai BK; Jana NR
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25813-20. PubMed ID: 26540091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy.
    Lindgren M; Sörgjerd K; Hammarström P
    Biophys J; 2005 Jun; 88(6):4200-12. PubMed ID: 15764666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection, inhibition and disintegration of amyloid fibrils: the role of optical probes and macrocyclic receptors.
    Bhasikuttan AC; Mohanty J
    Chem Commun (Camb); 2017 Mar; 53(19):2789-2809. PubMed ID: 28217771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benzimidazole-based fluorophores for the detection of amyloid fibrils with higher sensitivity than Thioflavin-T.
    Pravin N; Kumar R; Tripathi S; Kumar P; Mohite GM; Navalkar A; Panigrahi R; Singh N; Gadhe LG; Manchanda S; Shimozawa M; Nilsson P; Johansson J; Kumar A; Maji SK; Shanmugam M
    J Neurochem; 2021 Mar; 156(6):1003-1019. PubMed ID: 32750740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring the formation of insulin oligomers using a NIR emitting glucose-conjugated BODIPY dye.
    Mora AK; Murudkar S; Shivran N; Mula S; Chattopadhyay S; Nath S
    Int J Biol Macromol; 2021 Jan; 166():1121-1130. PubMed ID: 33159943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.