BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 34782468)

  • 1. Structure of the ATP synthase from
    Montgomery MG; Petri J; Spikes TE; Walker JE
    Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34782468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and subunit arrangement of Mycobacterial F
    Kamariah N; Huber RG; Nartey W; Bhushan S; Bond PJ; Grüber G
    J Struct Biol; 2019 Aug; 207(2):199-208. PubMed ID: 31132404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of Mycobacterium-specific components of F-ATP synthase subunits α and ε.
    Bogdanović N; Sundararaman L; Kamariah N; Tyagi A; Bhushan S; Ragunathan P; Shin J; Dick T; Grüber G
    J Struct Biol; 2018 Dec; 204(3):420-434. PubMed ID: 30342092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline.
    Guo H; Courbon GM; Bueler SA; Mai J; Liu J; Rubinstein JL
    Nature; 2021 Jan; 589(7840):143-147. PubMed ID: 33299175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic assessment of mycobacterial F
    Wong CF; Lau AM; Harikishore A; Saw WG; Shin J; Ragunathan P; Bhushan S; Ngan SC; Sze SK; Bates RW; Dick T; Grüber G
    FEBS J; 2021 Feb; 288(3):818-836. PubMed ID: 32525613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase.
    Haagsma AC; Podasca I; Koul A; Andries K; Guillemont J; Lill H; Bald D
    PLoS One; 2011; 6(8):e23575. PubMed ID: 21858172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of the catalytic domain of the ATP synthase from
    Zhang AT; Montgomery MG; Leslie AGW; Cook GM; Walker JE
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4206-4211. PubMed ID: 30683723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase.
    Gaballo A; Zanotti F; Papa S
    Curr Protein Pept Sci; 2002 Aug; 3(4):451-60. PubMed ID: 12370007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halting ionic shuttle to disrupt the synthetic machinery-Structural and molecular insights into the inhibitory roles of Bedaquiline towards Mycobacterium tuberculosis ATP synthase in the treatment of tuberculosis.
    Salifu EY; Agoni C; Olotu FA; Dokurugu YM; Soliman MES
    J Cell Biochem; 2019 Sep; 120(9):16108-16119. PubMed ID: 31125144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The NMR solution structure of Mycobacterium tuberculosis F-ATP synthase subunit ε provides new insight into energy coupling inside the rotary engine.
    Joon S; Ragunathan P; Sundararaman L; Nartey W; Kundu S; Manimekalai MSS; Bogdanović N; Dick T; Grüber G
    FEBS J; 2018 Mar; 285(6):1111-1128. PubMed ID: 29360236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State.
    Patil V; Jain V
    J Bacteriol; 2019 Oct; 201(19):. PubMed ID: 31285242
    [No Abstract]   [Full Text] [Related]  

  • 12. Unique structural and mechanistic properties of mycobacterial F-ATP synthases: Implications for drug design.
    Kamariah N; Ragunathan P; Shin J; Saw WG; Wong CF; Dick T; Grüber G
    Prog Biophys Mol Biol; 2020 May; 152():64-73. PubMed ID: 31743686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM.
    Zhou A; Rohou A; Schep DG; Bason JV; Montgomery MG; Walker JE; Grigorieff N; Rubinstein JL
    Elife; 2015 Oct; 4():e10180. PubMed ID: 26439008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of a unique loop in the mycobacterial F-ATP synthase γ subunit sheds light on its inhibitory role in ATP hydrolysis-driven H(+) pumping.
    Hotra A; Suter M; Biuković G; Ragunathan P; Kundu S; Dick T; Grüber G
    FEBS J; 2016 May; 283(10):1947-61. PubMed ID: 26996828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase.
    Lau WC; Rubinstein JL
    Nature; 2011 Dec; 481(7380):214-8. PubMed ID: 22178924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of antitubercular compound library identifies novel ATP synthase inhibitors of Mycobacterium tuberculosis.
    Kumar S; Mehra R; Sharma S; Bokolia NP; Raina D; Nargotra A; Singh PP; Khan IA
    Tuberculosis (Edinb); 2018 Jan; 108():56-63. PubMed ID: 29523328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations of subunit {varepsilon} of the Mycobacterium tuberculosis F1Fo ATP synthase and a novel model for mechanism of action of the tuberculosis drug TMC207.
    Biukovic G; Basak S; Manimekalai MS; Rishikesan S; Roessle M; Dick T; Rao SP; Hunke C; Grüber G
    Antimicrob Agents Chemother; 2013 Jan; 57(1):168-76. PubMed ID: 23089752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase.
    Boltz KW; Frasch WD
    Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations on the N-terminal edge of the DELSEED loop in either the α or β subunit of the mitochondrial F1-ATPase enhance ATP hydrolysis in the absence of the central γ rotor.
    La T; Clark-Walker GD; Wang X; Wilkens S; Chen XJ
    Eukaryot Cell; 2013 Nov; 12(11):1451-61. PubMed ID: 24014764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Mechanisms of F-Type ATP Synthases.
    Kühlbrandt W
    Annu Rev Biochem; 2019 Jun; 88():515-549. PubMed ID: 30901262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.