These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 34782468)
1. Structure of the ATP synthase from Montgomery MG; Petri J; Spikes TE; Walker JE Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34782468 [TBL] [Abstract][Full Text] [Related]
2. Structure and subunit arrangement of Mycobacterial F Kamariah N; Huber RG; Nartey W; Bhushan S; Bond PJ; Grüber G J Struct Biol; 2019 Aug; 207(2):199-208. PubMed ID: 31132404 [TBL] [Abstract][Full Text] [Related]
3. Structure and function of Mycobacterium-specific components of F-ATP synthase subunits α and ε. Bogdanović N; Sundararaman L; Kamariah N; Tyagi A; Bhushan S; Ragunathan P; Shin J; Dick T; Grüber G J Struct Biol; 2018 Dec; 204(3):420-434. PubMed ID: 30342092 [TBL] [Abstract][Full Text] [Related]
4. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline. Guo H; Courbon GM; Bueler SA; Mai J; Liu J; Rubinstein JL Nature; 2021 Jan; 589(7840):143-147. PubMed ID: 33299175 [TBL] [Abstract][Full Text] [Related]
5. A systematic assessment of mycobacterial F Wong CF; Lau AM; Harikishore A; Saw WG; Shin J; Ragunathan P; Bhushan S; Ngan SC; Sze SK; Bates RW; Dick T; Grüber G FEBS J; 2021 Feb; 288(3):818-836. PubMed ID: 32525613 [TBL] [Abstract][Full Text] [Related]
6. Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase. Haagsma AC; Podasca I; Koul A; Andries K; Guillemont J; Lill H; Bald D PLoS One; 2011; 6(8):e23575. PubMed ID: 21858172 [TBL] [Abstract][Full Text] [Related]
7. The structure of the catalytic domain of the ATP synthase from Zhang AT; Montgomery MG; Leslie AGW; Cook GM; Walker JE Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4206-4211. PubMed ID: 30683723 [TBL] [Abstract][Full Text] [Related]
8. Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase. Gaballo A; Zanotti F; Papa S Curr Protein Pept Sci; 2002 Aug; 3(4):451-60. PubMed ID: 12370007 [TBL] [Abstract][Full Text] [Related]
9. Halting ionic shuttle to disrupt the synthetic machinery-Structural and molecular insights into the inhibitory roles of Bedaquiline towards Mycobacterium tuberculosis ATP synthase in the treatment of tuberculosis. Salifu EY; Agoni C; Olotu FA; Dokurugu YM; Soliman MES J Cell Biochem; 2019 Sep; 120(9):16108-16119. PubMed ID: 31125144 [TBL] [Abstract][Full Text] [Related]
10. The NMR solution structure of Mycobacterium tuberculosis F-ATP synthase subunit ε provides new insight into energy coupling inside the rotary engine. Joon S; Ragunathan P; Sundararaman L; Nartey W; Kundu S; Manimekalai MSS; Bogdanović N; Dick T; Grüber G FEBS J; 2018 Mar; 285(6):1111-1128. PubMed ID: 29360236 [TBL] [Abstract][Full Text] [Related]
11. Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State. Patil V; Jain V J Bacteriol; 2019 Oct; 201(19):. PubMed ID: 31285242 [No Abstract] [Full Text] [Related]
12. Unique structural and mechanistic properties of mycobacterial F-ATP synthases: Implications for drug design. Kamariah N; Ragunathan P; Shin J; Saw WG; Wong CF; Dick T; Grüber G Prog Biophys Mol Biol; 2020 May; 152():64-73. PubMed ID: 31743686 [TBL] [Abstract][Full Text] [Related]
13. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. Zhou A; Rohou A; Schep DG; Bason JV; Montgomery MG; Walker JE; Grigorieff N; Rubinstein JL Elife; 2015 Oct; 4():e10180. PubMed ID: 26439008 [TBL] [Abstract][Full Text] [Related]
14. Deletion of a unique loop in the mycobacterial F-ATP synthase γ subunit sheds light on its inhibitory role in ATP hydrolysis-driven H(+) pumping. Hotra A; Suter M; Biuković G; Ragunathan P; Kundu S; Dick T; Grüber G FEBS J; 2016 May; 283(10):1947-61. PubMed ID: 26996828 [TBL] [Abstract][Full Text] [Related]
15. Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Lau WC; Rubinstein JL Nature; 2011 Dec; 481(7380):214-8. PubMed ID: 22178924 [TBL] [Abstract][Full Text] [Related]
17. Variations of subunit {varepsilon} of the Mycobacterium tuberculosis F1Fo ATP synthase and a novel model for mechanism of action of the tuberculosis drug TMC207. Biukovic G; Basak S; Manimekalai MS; Rishikesan S; Roessle M; Dick T; Rao SP; Hunke C; Grüber G Antimicrob Agents Chemother; 2013 Jan; 57(1):168-76. PubMed ID: 23089752 [TBL] [Abstract][Full Text] [Related]
18. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase. Boltz KW; Frasch WD Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104 [TBL] [Abstract][Full Text] [Related]
19. Mutations on the N-terminal edge of the DELSEED loop in either the α or β subunit of the mitochondrial F1-ATPase enhance ATP hydrolysis in the absence of the central γ rotor. La T; Clark-Walker GD; Wang X; Wilkens S; Chen XJ Eukaryot Cell; 2013 Nov; 12(11):1451-61. PubMed ID: 24014764 [TBL] [Abstract][Full Text] [Related]
20. Structure and Mechanisms of F-Type ATP Synthases. Kühlbrandt W Annu Rev Biochem; 2019 Jun; 88():515-549. PubMed ID: 30901262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]