BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34782641)

  • 1. Defensive strategies of Norway spruce and Kurile larch heartwood elucidated on the micron-level.
    Füchtner S; Piqueras S; Thygesen LG
    Sci Rep; 2021 Nov; 11(1):22235. PubMed ID: 34782641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobic and Hydrophilic Extractives in Norway Spruce and Kurile Larch and Their Role in Brown-Rot Degradation.
    Füchtner S; Brock-Nannestad T; Smeds A; Fredriksson M; Pilgård A; Thygesen LG
    Front Plant Sci; 2020; 11():855. PubMed ID: 32695126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical Review on the Use of Extractives of Naturally Durable Woods as Natural Wood Protectants.
    Kirker GT; Hassan B; Mankowski ME; Eller FJ
    Insects; 2024 Jan; 15(1):. PubMed ID: 38249075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Formation of Heartwood in Larch Using Synchrotron Infrared Imaging Combined With Multivariate Analysis and Atomic Force Microscope Infrared Spectroscopy.
    Piqueras S; Füchtner S; Rocha de Oliveira R; Gómez-Sánchez A; Jelavić S; Keplinger T; de Juan A; Thygesen LG
    Front Plant Sci; 2019; 10():1701. PubMed ID: 32117328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns and roles of lignan and terpenoid accumulation in the reaction zone compartmentalizing pathogen-infected heartwood of Norway spruce.
    Nagy NE; Norli HR; Fongen M; Østby RB; Heldal IM; Davik J; Hietala AM
    Planta; 2022 Feb; 255(3):63. PubMed ID: 35142905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Durability and Moisture Dynamics of Douglas-Fir Wood From Slovenia.
    Humar M; Vek V; Oven P; Lesar B; Kržišnik D; Keržič E; Hočevar M; Brus R
    Front Plant Sci; 2022; 13():860734. PubMed ID: 35422821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extractive concentrations and cellular-level distributions change radially from outer to inner heartwood in Scots pine.
    Belt T; Venäläinen M; Altgen M; Harju A; Rautkari L
    Tree Physiol; 2021 Jun; 41(6):1034-1045. PubMed ID: 33291149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Characterization of Chemical Composition and Antioxidant Activity of Lignan-Rich Coniferous Knotwood Extractives.
    Ul'yanovskii NV; Onuchina AA; Faleva AV; Gorbova NS; Kosyakov DS
    Antioxidants (Basel); 2022 Nov; 11(12):. PubMed ID: 36552546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylem defense wood of Norway spruce compromised by the pathogenic white-rot fungus Heterobasidion parviporum shows a prolonged period of selective decay.
    Nagy NE; Ballance S; Kvaalen H; Fossdal CG; Solheim H; Hietala AM
    Planta; 2012 Oct; 236(4):1125-33. PubMed ID: 22644766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular level chemical changes in Scots pine heartwood during incipient brown rot decay.
    Belt T; Altgen M; Mäkelä M; Hänninen T; Rautkari L
    Sci Rep; 2019 Mar; 9(1):5188. PubMed ID: 30914737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical composition and natural durability of juvenile and mature heartwood of Robinia pseudoacacia L.
    Latorraca JV; Dünisch O; Koch G
    An Acad Bras Cienc; 2011 Sep; 83(3):1059-68. PubMed ID: 21779654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is leaf area of Norway spruce (
    Dirnberger G; Kumer AE; Schnur E; Sterba H
    Ann For Sci; 2017; 74(1):8. PubMed ID: 28250710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal stilbene impregnation: transport and distribution on the micron-level.
    Felhofer M; Prats-Mateu B; Bock P; Gierlinger N
    Tree Physiol; 2018 Oct; 38(10):1526-1537. PubMed ID: 29992254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fungal Degradation of Extractives Plays an Important Role in the Brown Rot Decay of Scots Pine Heartwood.
    Belt T; Harju A; Kilpeläinen P; Venäläinen M
    Front Plant Sci; 2022; 13():912555. PubMed ID: 35646036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives.
    Schultz TP; Nicholas DD
    Phytochemistry; 2000 May; 54(1):47-52. PubMed ID: 10846746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant Effects of Four Heartwood Extractives on Midgut Enzyme Activity in Heterotermes indicola (Blattodea: Rhinotermitidae).
    Hassan B; Ahmed S; Kirker G; Mankowski ME; Misbah-Ul-Haq M
    Environ Entomol; 2018 Jun; 47(3):741-748. PubMed ID: 29528387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radial patterns of carbon isotopes in the xylem extractives and cellulose of Douglas-fir.
    Taylor AM; Brooks JR; Lachenbruch B; Morrell JJ
    Tree Physiol; 2007 Jun; 27(6):921-7. PubMed ID: 17331910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selected Properties of Cement Bound Spruce and Larch Bark Bio-Aggregates.
    Urstöger J; Barbu MC; Pacher T; Petutschnigg A; Jorda J; Tudor EM
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wood Extractives of Silver Fir and Their Antioxidant and Antifungal Properties.
    Vek V; Keržič E; Poljanšek I; Eklund P; Humar M; Oven P
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changing in Larch Sapwood Extractives Due to Distinct Ionizing Radiation Sources.
    Schnabel T; Barbu MC; Tudor EM; Petutschnigg A
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.