These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34782778)

  • 1. Electronic thermal transport measurement in low-dimensional materials with graphene non-local noise thermometry.
    Waissman J; Anderson LE; Talanov AV; Yan Z; Shin YJ; Najafabadi DH; Rezaee M; Feng X; Nocera DG; Taniguchi T; Watanabe K; Skinner B; Matveev KA; Kim P
    Nat Nanotechnol; 2022 Feb; 17(2):166-173. PubMed ID: 34782778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge and heat transport in soft nanosystems in the presence of time-dependent perturbations.
    Nocera A; Perroni CA; Ramaglia VM; Cataudella V
    Beilstein J Nanotechnol; 2016; 7():439-64. PubMed ID: 27335736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ballistic phonon thermal transport in multiwalled carbon nanotubes.
    Chiu HY; Deshpande VV; Postma HW; Lau CN; Mikó C; Forró L; Bockrath M
    Phys Rev Lett; 2005 Nov; 95(22):226101. PubMed ID: 16384238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the quantum of thermal conductance.
    Schwab K; Henriksen EA; Worlock JM; Roukes ML
    Nature; 2000 Apr; 404(6781):974-7. PubMed ID: 10801121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Temperature Thermal Transport Characteristics in Epitaxial Bilayer Graphene Microbridges.
    Li F; Miao W; Yu C; He Z; Wang Q; Zhong J; Wu F; Wang Z; Zhou K; Ren Y; Zhang W; Li J; Shi S; Liu Q; Feng Z
    ACS Omega; 2024 May; 9(21):23053-23059. PubMed ID: 38826519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal quantized thermal conductance in graphene.
    Srivastav SK; Sahu MR; Watanabe K; Taniguchi T; Banerjee S; Das A
    Sci Adv; 2019 Jul; 5(7):eaaw5798. PubMed ID: 31309156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-high resolution steady-state micro-thermometry using a bipolar direct current reversal technique.
    Wu JY; Wu W; Pettes MT
    Rev Sci Instrum; 2016 Sep; 87(9):094901. PubMed ID: 27782596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phononics of Graphene and Related Materials.
    Balandin AA
    ACS Nano; 2020 May; 14(5):5170-5178. PubMed ID: 32338870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon thermal conduction in novel 2D materials.
    Xu X; Chen J; Li B
    J Phys Condens Matter; 2016 Dec; 28(48):483001. PubMed ID: 27665943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct Signatures of Electron-Phonon Coupling Observed in the Lattice Thermal Conductivity of NbSe
    Yang L; Tao Y; Liu J; Liu C; Zhang Q; Akter M; Zhao Y; Xu TT; Xu Y; Mao Z; Chen Y; Li D
    Nano Lett; 2019 Jan; 19(1):415-421. PubMed ID: 30532983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonequilibrium Phonon Thermal Resistance at MoS
    Zheng W; McClellan CJ; Pop E; Koh YK
    ACS Appl Mater Interfaces; 2022 May; 14(19):22372-22380. PubMed ID: 35506655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon transport in graphene based materials.
    Liu C; Lu P; Chen W; Zhao Y; Chen Y
    Phys Chem Chem Phys; 2021 Dec; 23(46):26030-26060. PubMed ID: 34515261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization.
    Hopkins PE; Baraket M; Barnat EV; Beechem TE; Kearney SP; Duda JC; Robinson JT; Walton SG
    Nano Lett; 2012 Feb; 12(2):590-5. PubMed ID: 22214512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the effect of chirality on thermal transport in a pillared-graphene structure.
    Panneerselvam V; Anandakrishnan A; Sathian SP
    Phys Chem Chem Phys; 2023 Feb; 25(8):6184-6193. PubMed ID: 36752543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimensional crossover of thermal conductance in graphene nanoribbons: a first-principles approach.
    Wang J; Wang XM; Chen YF; Wang JS
    J Phys Condens Matter; 2012 Jul; 24(29):295403. PubMed ID: 22739359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimensional crossover of thermal transport in few-layer graphene.
    Ghosh S; Bao W; Nika DL; Subrina S; Pokatilov EP; Lau CN; Balandin AA
    Nat Mater; 2010 Jul; 9(7):555-8. PubMed ID: 20453845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum limit of heat flow across a single electronic channel.
    Jezouin S; Parmentier FD; Anthore A; Gennser U; Cavanna A; Jin Y; Pierre F
    Science; 2013 Nov; 342(6158):601-4. PubMed ID: 24091707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot Carrier Thermalization and Josephson Inductance Thermometry in a Graphene-Based Microwave Circuit.
    Katti R; Arora HS; Saira OP; Watanabe K; Taniguchi T; Schwab KC; Roukes ML; Nadj-Perge S
    Nano Lett; 2023 May; 23(10):4136-4141. PubMed ID: 37162008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.