These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 34782898)
1. DC field coupled evaporation of a sessile gold nanofluid droplet. Zaibudeen AW; Bandyopadhyay R Soft Matter; 2021 Nov; 17(45):10294-10300. PubMed ID: 34782898 [TBL] [Abstract][Full Text] [Related]
2. Combined effects of nanoparticle size, and nanoparticle and surfactant concentrations on the evaporative kinetics, dried morphologies, and plasmonic property of gold colloidal dispersion droplets. Zaibudeen AW; Bandyopadhyay R Nanotechnology; 2023 May; 34(29):. PubMed ID: 37068469 [TBL] [Abstract][Full Text] [Related]
3. Disk-Ring Deposition in Drying a Sessile Nanofluid Droplet with Enhanced Marangoni Effect and Particle Surface Adsorption. Ren J; Crivoi A; Duan F Langmuir; 2020 Dec; 36(49):15064-15074. PubMed ID: 33317269 [TBL] [Abstract][Full Text] [Related]
4. Surfactant-adsorption-induced initial depinning behavior in evaporating water and nanofluid sessile droplets. Zhong X; Duan F Langmuir; 2015 May; 31(19):5291-8. PubMed ID: 25923721 [TBL] [Abstract][Full Text] [Related]
5. Fast evaporation of spreading droplets of colloidal suspensions. Maki KL; Kumar S Langmuir; 2011 Sep; 27(18):11347-63. PubMed ID: 21834573 [TBL] [Abstract][Full Text] [Related]
6. Elimination of the coffee-ring effect by promoting particle adsorption and long-range interaction. Crivoi A; Duan F Langmuir; 2013 Oct; 29(39):12067-74. PubMed ID: 24015843 [TBL] [Abstract][Full Text] [Related]
7. Disk to dual ring deposition transformation in evaporating nanofluid droplets from substrate cooling to heating. Zhong X; Duan F Phys Chem Chem Phys; 2016 Jul; 18(30):20664-71. PubMed ID: 27411495 [TBL] [Abstract][Full Text] [Related]
8. Anisotropic nanocluster arrays to a diminished zone: different regimes of surface deposition of gold nanocolloids. Khawas S; Srivastava S Soft Matter; 2023 May; 19(20):3580-3589. PubMed ID: 37161512 [TBL] [Abstract][Full Text] [Related]
9. Altering the coffee-ring effect by adding a surfactant-like viscous polymer solution. Seo C; Jang D; Chae J; Shin S Sci Rep; 2017 Mar; 7(1):500. PubMed ID: 28356553 [TBL] [Abstract][Full Text] [Related]
10. Self-Sorting of Bidispersed Colloidal Particles Near Contact Line of an Evaporating Sessile Droplet. Patil ND; Bhardwaj R; Sharma A Langmuir; 2018 Oct; 34(40):12058-12070. PubMed ID: 29812943 [TBL] [Abstract][Full Text] [Related]
11. Pinning and Depinning Dynamics of an Evaporating Sessile Droplet Containing Mono- and Bidispersed Colloidal Particles on a Nonheated/Heated Hydrophobic Substrate. Gupta S; Thombare MR; Patil ND Langmuir; 2023 Feb; 39(8):3102-3117. PubMed ID: 36800247 [TBL] [Abstract][Full Text] [Related]
12. Crossover from the coffee-ring effect to the uniform deposit caused by irreversible cluster-cluster aggregation. Crivoi A; Zhong X; Duan F Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032302. PubMed ID: 26465468 [TBL] [Abstract][Full Text] [Related]
13. Evaporation of a Sessile Colloidal Water-Glycerol Droplet: Marangoni Ring Formation. Thayyil Raju L; Diddens C; Li Y; Marin A; van der Linden MN; Zhang X; Lohse D Langmuir; 2022 Oct; 38(39):12082-12094. PubMed ID: 36094143 [TBL] [Abstract][Full Text] [Related]
14. Influence of surface orientation on the organization of nanoparticles in drying nanofluid droplets. Hampton MA; Nguyen TA; Nguyen AV; Xu ZP; Huang L; Rudolph V J Colloid Interface Sci; 2012 Jul; 377(1):456-62. PubMed ID: 22503627 [TBL] [Abstract][Full Text] [Related]
15. Magnetic Field-Driven Convection for Directed Surface Patterning of Colloids. Lee JG; Porter V; Shelton WA; Bharti B Langmuir; 2018 Dec; 34(50):15416-15424. PubMed ID: 30421934 [TBL] [Abstract][Full Text] [Related]
16. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Still T; Yunker PJ; Yodh AG Langmuir; 2012 Mar; 28(11):4984-8. PubMed ID: 22369657 [TBL] [Abstract][Full Text] [Related]
17. Evaporation of Initially Heated Sessile Droplets and the Resultant Dried Colloidal Deposits on Substrates Held at Ambient Temperature. Chatterjee S; Kumar M; Murallidharan JS; Bhardwaj R Langmuir; 2020 Jul; 36(29):8407-8421. PubMed ID: 32602342 [TBL] [Abstract][Full Text] [Related]
18. Characterizing the Microparticles Deposition Structure and its Photonic Nature in Surfactant-Laden Evaporating Colloidal Sessile Droplets. Tiwari A; Lee SJ; Garg DK; Shin S; Thokchom AK Langmuir; 2024 Apr; 40(16):8711-8720. PubMed ID: 38608175 [TBL] [Abstract][Full Text] [Related]
19. Drying of Ethanol/Water Droplets Containing Silica Nanoparticles. Shi J; Yang L; Bain CD ACS Appl Mater Interfaces; 2019 Apr; 11(15):14275-14285. PubMed ID: 30901186 [TBL] [Abstract][Full Text] [Related]
20. Effects of Substrate Heating and Wettability on Evaporation Dynamics and Deposition Patterns for a Sessile Water Droplet Containing Colloidal Particles. Patil ND; Bange PG; Bhardwaj R; Sharma A Langmuir; 2016 Nov; 32(45):11958-11972. PubMed ID: 27759960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]