BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34783335)

  • 1. An experimental and numerical modelling investigation of the optical properties of Intralipid using deep Raman spectroscopy.
    Moran LJ; Wordingham F; Gardner B; Stone N; Harries TJ
    Analyst; 2021 Dec; 146(24):7601-7610. PubMed ID: 34783335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties.
    Vardaki MZ; Gardner B; Stone N; Matousek P
    Analyst; 2015 Aug; 140(15):5112-9. PubMed ID: 26075989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue.
    Akbarzadeh A; Edjlali E; Sheehy G; Selb J; Agarwal R; Weber J; Leblond F
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33111509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time.
    Lai P; Xu X; Wang LV
    J Biomed Opt; 2014 Mar; 19(3):35002. PubMed ID: 24604534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal stability of intralipid optical phantoms.
    Rowe PI; Künnemeyer R; McGlone A; Talele S; Martinsen P; Oliver R
    Appl Spectrosc; 2013 Aug; 67(8):993-6. PubMed ID: 23876738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Layered Models of Light Scattering in the Near Infrared A: Optical Measurements and Simulation
    Almajidy RK; Rackebrandt K; Gehring H; Hofmann UG
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4770-4774. PubMed ID: 31946928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Intralipid-10% in fluorescence distortion studies on liquid-tissue phantoms in UV range.
    Suresh Anand BS; Sujatha N
    J Biophotonics; 2011 Jan; 4(1-2):92-7. PubMed ID: 20414902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface layering properties of Intralipid phantoms.
    Bodenschatz N; Krauter P; Foschum F; Nothelfer S; Liemert A; Simon E; Kröner S; Kienle A
    Phys Med Biol; 2015 Feb; 60(3):1171-83. PubMed ID: 25590919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Raman spectroscopy in turbid media.
    Reble C; Gersonde I; Andree S; Eichler HJ; Helfmann J
    J Biomed Opt; 2010; 15(3):037016. PubMed ID: 20615045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse Monte Carlo for estimation of scattering and absorption in liquid optical phantoms.
    Karlsson H; Fredriksson I; Larsson M; Strömberg T
    Opt Express; 2012 May; 20(11):12233-46. PubMed ID: 22714213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of multi-biomarker optimized tissue-mimicking phantoms for multi-modal optical spectroscopy.
    Gautam R; Mac Mahon D; Eager G; Ma H; Guadagno CN; Andersson-Engels S; Konugolu Venkata Sekar S
    Analyst; 2023 Sep; 148(19):4768-4776. PubMed ID: 37665320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy.
    Iping Petterson IE; Esmonde-White FW; de Wilde W; Morris MD; Ariese F
    Analyst; 2015 Apr; 140(7):2504-12. PubMed ID: 25665820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of in vivo Raman spectral measurements of human skin with a multi-layered tissue optical model.
    Wang S; Zhao J; Lui H; He Q; Bai J; Zeng H
    J Biophotonics; 2014 Sep; 7(9):703-12. PubMed ID: 24307289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of solid phantoms with defined scattering and absorption properties for optical tomography.
    Sukowski U; Schubert F; Grosenick D; Rinneberg H
    Phys Med Biol; 1996 Sep; 41(9):1823-44. PubMed ID: 8884914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of coded aperture Raman spectroscopy to analytes beneath turbid biological tissue and tissue-simulating phantoms.
    Maher JR; Matthews TE; Reid AK; Katz DF; Wax A
    J Biomed Opt; 2014; 19(11):117001. PubMed ID: 25371979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of the influence of internal optical absorption on the external Raman signal for biological samples.
    Krasnikov I; Suhr C; Seteikin A; Meinhardt-Wollweber M; Roth B
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):877-882. PubMed ID: 31045016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range.
    Aernouts B; Zamora-Rojas E; Van Beers R; Watté R; Wang L; Tsuta M; Lammertyn J; Saeys W
    Opt Express; 2013 Dec; 21(26):32450-67. PubMed ID: 24514839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy.
    Grabtchak S; Palmer TJ; Whelan WM
    J Biomed Opt; 2011 Jul; 16(7):077003. PubMed ID: 21806283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology.
    Wood MF; Guo X; Vitkin IA
    J Biomed Opt; 2007; 12(1):014029. PubMed ID: 17343504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband absorption spectroscopy of turbid media using a dual step steady-state method.
    Foschum F; Kienle A
    J Biomed Opt; 2012 Mar; 17(3):037009. PubMed ID: 22502581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.