These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34783335)

  • 41. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods.
    Vishwanath K; Pogue B; Mycek MA
    Phys Med Biol; 2002 Sep; 47(18):3387-405. PubMed ID: 12375827
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Determination of the optical properties of turbid media from a single Monte Carlo simulation.
    Kienle A; Patterson MS
    Phys Med Biol; 1996 Oct; 41(10):2221-7. PubMed ID: 8912392
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of estimation of optical properties of sub superficial structures in multi layered tissue model using distribution function method.
    Żołek N; Rix H; Botwicz M
    Comput Methods Programs Biomed; 2020 Jan; 183():105084. PubMed ID: 31580969
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study on the propagation of ultra-short pulse light in cylindrical optical phantoms.
    Sassaroli A; Martelli F; Imai D; Yamada Y
    Phys Med Biol; 1999 Nov; 44(11):2747-63. PubMed ID: 10588282
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations.
    Kamran F; Andersen PE
    Appl Opt; 2015 Aug; 54(23):7099-105. PubMed ID: 26368382
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determining the light scattering and absorption parameters from forward-directed flux measurements in cardiac tissue.
    Costantino AJ; Hyatt CJ; Kollisch-Singule MC; Beaumont J; Roth BJ; Pertsov AM
    J Biomed Opt; 2017 Jul; 22(7):76009. PubMed ID: 28715543
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monte Carlo method for photon heating using temperature-dependent optical properties.
    Slade AB; Aguilar G
    Comput Methods Programs Biomed; 2015 Feb; 118(2):234-41. PubMed ID: 25488656
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of phantom microstructure on their optical properties.
    Stergar J; Hren R; Milanič M
    J Biomed Opt; 2024 Sep; 29(9):093502. PubMed ID: 38715718
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Measurement and analysis of light distribution in intralipid-10% at 650 nm.
    Xu T; Zhang C; Wang X; Zhang L; Tian J
    Appl Opt; 2003 Oct; 42(28):5777-84. PubMed ID: 14528943
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bright emission from a random Raman laser.
    Hokr BH; Bixler JN; Cone MT; Mason JD; Beier HT; Noojin GD; Petrov GI; Golovan LA; Thomas RJ; Rockwell BA; Yakovlev VV
    Nat Commun; 2014 Jul; 5():4356. PubMed ID: 25014073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of dependent scattering on the optical properties of Intralipid tissue phantoms.
    Di Ninni P; Martelli F; Zaccanti G
    Biomed Opt Express; 2011 Aug; 2(8):2265-78. PubMed ID: 21833363
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intrinsic Raman spectroscopy for quantitative biological spectroscopy part II: experimental applications.
    Bechtel KL; Shih WC; Feld MS
    Opt Express; 2008 Aug; 16(17):12737-45. PubMed ID: 18711512
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photothermal determination of optical coefficients of tissue phantoms using an optical fibre probe.
    Laufer JG; Beard PC; Walker SP; Mills TN
    Phys Med Biol; 2001 Oct; 46(10):2515-30. PubMed ID: 11686272
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensitivity of Transmission Raman Spectroscopy Signals to Temperature of Biological Tissues.
    Ghita A; Matousek P; Stone N
    Sci Rep; 2018 May; 8(1):8379. PubMed ID: 29849076
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient determination of the epidermal optical properties using a diffusion model-based approach: Monte Carlo studies.
    Tseng SH; Hou MF
    J Biomed Opt; 2011 Aug; 16(8):087007. PubMed ID: 21895334
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical evaluation of temporal focusing characteristics in transparent and scattering media.
    Dana H; Shoham S
    Opt Express; 2011 Mar; 19(6):4937-48. PubMed ID: 21445129
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical characterization of thin female breast biopsies based on the reduced scattering coefficient.
    Garofalakis A; Zacharakis G; Filippidis G; Sanidas E; Tsiftsis DD; Stathopoulos E; Kafousi M; Ripoll J; Papazoglou TG
    Phys Med Biol; 2005 Jun; 50(11):2583-96. PubMed ID: 15901956
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reflectance-based determination of optical properties in highly attenuating tissue.
    Pfefer TJ; Matchette LS; Bennett CL; Gall JA; Wilke JN; Durkin AJ; Ediger MN
    J Biomed Opt; 2003 Apr; 8(2):206-15. PubMed ID: 12683846
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental and numerical analysis of short-pulse laser interaction with tissue phantoms containing inhomogeneities.
    Das C; Trivedi A; Mitra K; Vo-Dinh T
    Appl Opt; 2003 Sep; 42(25):5173-80. PubMed ID: 12962398
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP; Doyle TE
    Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.