These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34783342)

  • 1. Directed evolution approaches for optogenetic tool development.
    Jang J; Woolley GA
    Biochem Soc Trans; 2021 Dec; 49(6):2737-2748. PubMed ID: 34783342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.
    Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular and Molecular Optimization of a LOV (Light-Oxygen-Voltage)-Based Optogenetic Switch in Yeast.
    Romero A; Rojas V; Delgado V; Salinas F; Larrondo LF
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic Control of Gene Expression Using Cryptochrome 2 and a Light-Activated Degron.
    Hernández-Candia CN; Tucker CL
    Methods Mol Biol; 2020; 2173():151-158. PubMed ID: 32651916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible optogenetic control of kinase activity during differentiation and embryonic development.
    Krishnamurthy VV; Khamo JS; Mei W; Turgeon AJ; Ashraf HM; Mondal P; Patel DB; Risner N; Cho EE; Yang J; Zhang K
    Development; 2016 Nov; 143(21):4085-4094. PubMed ID: 27697903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Induced Dimerization Approaches to Control Cellular Processes.
    Klewer L; Wu YW
    Chemistry; 2019 Sep; 25(54):12452-12463. PubMed ID: 31304989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking of optical dimerizer systems.
    Pathak GP; Strickland D; Vrana JD; Tucker CL
    ACS Synth Biol; 2014 Nov; 3(11):832-8. PubMed ID: 25350266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools.
    Shcherbakova DM; Shemetov AA; Kaberniuk AA; Verkhusha VV
    Annu Rev Biochem; 2015; 84():519-50. PubMed ID: 25706899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2.
    Pathak GP; Spiltoir JI; Höglund C; Polstein LR; Heine-Koskinen S; Gersbach CA; Rossi J; Tucker CL
    Nucleic Acids Res; 2017 Nov; 45(20):e167. PubMed ID: 28431041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic switches for light-controlled gene expression in yeast.
    Salinas F; Rojas V; Delgado V; Agosin E; Larrondo LF
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2629-2640. PubMed ID: 28210796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic tools for dissecting complex intracellular signaling pathways.
    Kwon E; Heo WD
    Biochem Biophys Res Commun; 2020 Jun; 527(2):331-336. PubMed ID: 31948753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OptoBase: A Web Platform for Molecular Optogenetics.
    Kolar K; Knobloch C; Stork H; Žnidarič M; Weber W
    ACS Synth Biol; 2018 Jul; 7(7):1825-1828. PubMed ID: 29913065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable and Photoswitchable Chemically Induced Dimerization for Chemo-optogenetic Control of Protein and Organelle Positioning.
    Chen X; Wu YW
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6796-6799. PubMed ID: 29637703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Basis of Design and Engineering for Advanced Plant Optogenetics.
    Banerjee S; Mitra D
    Trends Plant Sci; 2020 Jan; 25(1):35-65. PubMed ID: 31699521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guidelines for Photoreceptor Engineering.
    Ziegler T; Schumacher CH; Möglich A
    Methods Mol Biol; 2016; 1408():389-403. PubMed ID: 26965138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering Selective Binders for Photoswitchable Proteins Using Phage Display.
    Reis JM; Xu X; McDonald S; Woloschuk RM; Jaikaran ASI; Vizeacoumar FS; Woolley GA; Uppalapati M
    ACS Synth Biol; 2018 Oct; 7(10):2355-2364. PubMed ID: 30203962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic protein clustering through fluorescent protein tagging and extension of CRY2.
    Park H; Kim NY; Lee S; Kim N; Kim J; Heo WD
    Nat Commun; 2017 Jun; 8(1):30. PubMed ID: 28646204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetics in bacteria - applications and opportunities.
    Lindner F; Diepold A
    FEMS Microbiol Rev; 2022 Mar; 46(2):. PubMed ID: 34791201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical applicability of optogenetic gene regulation.
    Wichert N; Witt M; Blume C; Scheper T
    Biotechnol Bioeng; 2021 Nov; 118(11):4168-4185. PubMed ID: 34287844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Dual Characteristics of Light-Induced Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation in Mammalian Cells.
    Che DL; Duan L; Zhang K; Cui B
    ACS Synth Biol; 2015 Oct; 4(10):1124-35. PubMed ID: 25985220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.