These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34783357)

  • 1. E-scape: Consumer-specific landscapes of energetic resources derived from stable isotope analysis and remote sensing.
    James WR; Santos RO; Rehage JS; Doerr JC; Nelson JA
    J Anim Ecol; 2022 Feb; 91(2):381-390. PubMed ID: 34783357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote sensing for restoration ecology: Application for restoring degraded, damaged, transformed, or destroyed ecosystems.
    Reif MK; Theel HJ
    Integr Environ Assess Manag; 2017 Jul; 13(4):614-630. PubMed ID: 27627787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movement is the glue connecting home ranges and habitat selection.
    Van Moorter B; Rolandsen CM; Basille M; Gaillard JM
    J Anim Ecol; 2016 Jan; 85(1):21-31. PubMed ID: 25980987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-based step selection analysis: Modelling the energetic drivers of animal movement and habitat use.
    Klappstein NJ; Potts JR; Michelot T; Börger L; Pilfold NW; Lewis MA; Derocher AE
    J Anim Ecol; 2022 May; 91(5):946-957. PubMed ID: 35277858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt marsh restoration: an overview of techniques and success indicators.
    Billah MM; Bhuiyan MKA; Islam MA; Das J; Hoque AR
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15347-15363. PubMed ID: 34989993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The energetic consequences of habitat structure for forest stream salmonids.
    Naman SM; Rosenfeld JS; Kiffney PM; Richardson JS
    J Anim Ecol; 2018 Sep; 87(5):1383-1394. PubMed ID: 29737519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High site fidelity and low site connectivity in temperate salt marsh fish populations: a stable isotope approach.
    Green BC; Smith DJ; Grey J; Underwood GJ
    Oecologia; 2012 Jan; 168(1):245-55. PubMed ID: 21786154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coastal fish assemblages reflect marine habitat connectivity and ontogenetic shifts in an estuary-bay-continental shelf gradient.
    Reis-Filho JA; Schmid K; Harvey ES; Giarrizzo T
    Mar Environ Res; 2019 Jun; 148():57-66. PubMed ID: 31102903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Food web analysis of southern California coastal wetlands using multiple stable isotopes.
    Kwak TJ; Zedler JB
    Oecologia; 1997 Apr; 110(2):262-277. PubMed ID: 28307434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing ecosystem services as part of ecological networks in three salt marsh ecosystems.
    Dee LE; Keyes AA
    Ecology; 2022 Mar; 103(3):e3609. PubMed ID: 34913165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of Landscape Ecological Risk at the Optimal Scale: A Case Study of the Open Coastal Wetlands in Jiangsu, China.
    Liu Y; Liu Y; Li J; Lu W; Wei X; Sun C
    Int J Environ Res Public Health; 2018 Aug; 15(8):. PubMed ID: 30096816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach.
    Hübner L; Pennings SC; Zimmer M
    Oecologia; 2015 Aug; 178(4):999-1015. PubMed ID: 25783486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative contributions of nearshore and wetland habitats to coastal food webs in the Great Lakes.
    Sierszen ME; Schoen LS; Kosiara JM; Hoffman JC; Cooper MJ; Uzarski DG
    J Great Lakes Res; 2019; 45(1):129-137. PubMed ID: 31728077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling ecology and GIS to evaluate efficacy of marine protected areas in Hawaii.
    Friedlander AM; Brown EK; Monaco ME
    Ecol Appl; 2007 Apr; 17(3):715-30. PubMed ID: 17494391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.].
    Sun ZY; Chen YQ; Yang L; Tang GL; Yuan SX; Lin ZW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):528-536. PubMed ID: 29749161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arthropod food web restoration following removal of an invasive wetland plant.
    Gratton C; Denno RF
    Ecol Appl; 2006 Apr; 16(2):622-31. PubMed ID: 16711049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of incorporating functional habitats into conservation planning for highly mobile species in dynamic systems.
    Webb MH; Terauds A; Tulloch A; Bell P; Stojanovic D; Heinsohn R
    Conserv Biol; 2017 Oct; 31(5):1018-1028. PubMed ID: 28130909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking the environmental impacts of ecological engineering on coastal wetlands with numerical modeling and remote sensing.
    Wu W; Yang Z; Chen C; Tian B
    J Environ Manage; 2022 Jan; 302(Pt A):113957. PubMed ID: 34673457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adapting to a changing world: unraveling the role of man-made habitats as alternative feeding areas for slender-billed gull (Chroicocephalus genei).
    Ramírez F; Navarro J; Afán I; Hobson KA; Delgado A; Forero MG
    PLoS One; 2012; 7(10):e47551. PubMed ID: 23094062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.