These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34783523)

  • 1. Drop-Casting Method to Screen Ruddlesden-Popper Perovskite Formulations for Use in Solar Cells.
    Zuo C; Scully AD; Gao M
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56217-56225. PubMed ID: 34783523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully Roll-to-Roll Processed Efficient Perovskite Solar Cells via Precise Control on the Morphology of PbI
    Li H; Zuo C; Angmo D; Weerasinghe H; Gao M; Yang J
    Nanomicro Lett; 2022 Mar; 14(1):79. PubMed ID: 35333995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-Carrier Transport in Quasi-2D Ruddlesden-Popper Perovskite Solar Cells.
    Yan L; Ma J; Li P; Zang S; Han L; Zhang Y; Song Y
    Adv Mater; 2022 Feb; 34(7):e2106822. PubMed ID: 34676930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling Thin Film Morphology Formation during Gas Quenching of Slot-Die Coated Perovskite Solar Modules.
    Geistert K; Ternes S; Ritzer DB; Paetzold UW
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37906716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Quality Ruddlesden-Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells.
    Liu P; Han N; Wang W; Ran R; Zhou W; Shao Z
    Adv Mater; 2021 Mar; 33(10):e2002582. PubMed ID: 33511702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improve the Charge Carrier Transporting in Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells.
    Dong X; Li X; Wang X; Zhao Y; Song W; Wang F; Xu S; Miao Z; Wu Z
    Adv Mater; 2024 May; 36(19):e2313056. PubMed ID: 38315828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot-Casting and Anti-solvent Free Fabrication of Efficient and Stable Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells.
    Yang W; Zhan Y; Yang F; Li Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61039-61046. PubMed ID: 34910452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.
    Eslamian M; Zabihi F
    Nanoscale Res Lett; 2015 Dec; 10(1):462. PubMed ID: 26625886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetonitrile based single step slot-die compatible perovskite ink for flexible photovoltaics.
    Burkitt D; Swartwout R; McGettrick J; Greenwood P; Beynon D; Brenes R; Bulović V; Watson T
    RSC Adv; 2019 Nov; 9(64):37415-37423. PubMed ID: 35542303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanometer Control of Ruddlesden-Popper Interlayers by Thermal Evaporation for Efficient Perovskite Photovoltaics.
    Datta K; Kim S; Li R; LaFollette DK; Yang J; Perini CAR; Correa-Baena JP
    Adv Mater; 2024 Jul; ():e2404795. PubMed ID: 38984503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window.
    Kim YY; Yang TY; Suhonen R; Kemppainen A; Hwang K; Jeon NJ; Seo J
    Nat Commun; 2020 Oct; 11(1):5146. PubMed ID: 33051454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic Heterocyclic Organic Spacer Cation-Assisted Growth of Large-Grain-Size 2DRP Perovskite Film for Enhanced Solar Cell Performance.
    Liu R; Liu C; Yu Y; Yu H; Xu X
    J Phys Chem Lett; 2022 Sep; 13(38):8945-8952. PubMed ID: 36135924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding of perovskite crystal growth and film formation in scalable deposition processes.
    Liu C; Cheng YB; Ge Z
    Chem Soc Rev; 2020 Mar; 49(6):1653-1687. PubMed ID: 32134426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous Formation of a Ligand-Based 2D Capping Layer on the Surface of Quasi-2D Perovskite Films.
    Zheng F; Raeber T; Rubanov S; Lee C; Seeber A; Hall C; Smith TA; Gao M; Angmo D; Ghiggino KP
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):51910-51920. PubMed ID: 36374030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot-Casting Large-Grain Perovskite Film for Efficient Solar Cells: Film Formation and Device Performance.
    Liao K; Li C; Xie L; Yuan Y; Wang S; Cao Z; Ding L; Hao F
    Nanomicro Lett; 2020 Jul; 12(1):156. PubMed ID: 34138179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Roll-to-Roll Processed Large-Area Perovskite Solar Cells Using Rapid Radiation Annealing Technique.
    Park GY; Kim MJ; Oh JY; Kim H; Kang B; Cho SK; Choi WJ; Kim M; Ham DS
    ACS Appl Mater Interfaces; 2024 May; 16(21):27410-27418. PubMed ID: 38738751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perovskite Ink with an Ultrawide Processing Window for Efficient and Scalable Perovskite Solar Cells in Ambient Air.
    Su J; Cai H; Yang J; Ye X; Han R; Ni J; Li J; Zhang J
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3531-3538. PubMed ID: 31859470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Critical Review on Crystal Growth Techniques for Scalable Deposition of Photovoltaic Perovskite Thin Films.
    Abbas M; Zeng L; Guo F; Rauf M; Yuan XC; Cai B
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot-Casting-Assisted Liquid Additive Engineering for Efficient and Stable Perovskite Solar Cells.
    Min H; Hu J; Xu Z; Liu T; Khan SU; Roh K; Loo YL; Rand BP
    Adv Mater; 2022 Sep; 34(36):e2205309. PubMed ID: 35841176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive Engineering in Antisolvent for Widening the Processing Window and Promoting Perovskite Seed Formation in Perovskite Solar Cells.
    Chen C; Zhou Z; Jiang Y; Feng Y; Fang Y; Liu J; Chen M; Liu J; Gao J; Feng SP
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17348-17357. PubMed ID: 35389214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.