These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34783611)

  • 1. Simulation of the mobility of the pelvic system: influence of fascia between organs.
    Diallo MN; Mayeur O; Lecomte-Grosbras P; Patrouix L; Witz JF; Lesaffre F; Rubod C; Cosson M; Brieu M
    Comput Methods Biomech Biomed Engin; 2022 Aug; 25(10):1073-1087. PubMed ID: 34783611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical pregnant pelvic system model and numerical simulation of childbirth: impact of delivery on the uterosacral ligaments, preliminary results.
    Lepage J; Jayyosi C; Lecomte-Grosbras P; Brieu M; Duriez C; Cosson M; Rubod C
    Int Urogynecol J; 2015 Apr; 26(4):497-504. PubMed ID: 25227746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical properties of the pelvic floor muscles of continent and incontinent women using an inverse finite element analysis.
    Silva MET; Brandão S; Parente MPL; Mascarenhas T; Natal Jorge RM
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):842-852. PubMed ID: 28303730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of normal pelvic mobilities in building an MRI-validated biomechanical model.
    Cosson M; Rubod C; Vallet A; Witz JF; Dubois P; Brieu M
    Int Urogynecol J; 2013 Jan; 24(1):105-12. PubMed ID: 22707008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a better understanding of pelvic system disorders using numerical simulation.
    Lecomte-Grosbras P; Diallo MN; Witz JF; Marchal D; Dequidt J; Cotin S; Cosson M; Duriez C; Brieu M
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):307-14. PubMed ID: 24505775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanical characteristics of the human bladder wall and application of the results in a finite elements model to study the pelvic floor].
    Marino G; Bignardi C; Pacca M; Ravarino N; Mosso L; Motta M
    Minerva Urol Nefrol; 2006 Jun; 58(2):213-9. PubMed ID: 16767076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pregnancy impact on uterosacral ligament and pelvic muscles using a 3D numerical and finite element model: preliminary results.
    Jean Dit Gautier E; Mayeur O; Lepage J; Brieu M; Cosson M; Rubod C
    Int Urogynecol J; 2018 Mar; 29(3):425-430. PubMed ID: 29188325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D simulation of pelvic system numerical simulation for a better understanding of the contribution of the uterine ligaments.
    Rubod C; Lecomte-Grosbras P; Brieu M; Giraudet G; Betrouni N; Cosson M
    Int Urogynecol J; 2013 Aug; ():. PubMed ID: 23958831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Female patient-specific finite element modeling of pelvic organ prolapse (POP).
    Chen ZW; Joli P; Feng ZQ; Rahim M; Pirró N; Bellemare ME
    J Biomech; 2015 Jan; 48(2):238-45. PubMed ID: 25529137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-compartment 3-D finite element model of rectocele and its interaction with cystocele.
    Luo J; Chen L; Fenner DE; Ashton-Miller JA; DeLancey JO
    J Biomech; 2015 Jun; 48(9):1580-6. PubMed ID: 25757664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biomechanical modeling of pelvic organ mobility: towards personalized medicine].
    Cosson M; Rubod C; Vallet A; Witz JF; Brieu M
    Bull Acad Natl Med; 2011 Nov; 195(8):1869-83; discussion 1883. PubMed ID: 22844748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobility and stress analysis of different surgical simulations during a sacral colpopexy, using a finite element model of the pelvic system.
    Jeanditgautier E; Mayeur O; Brieu M; Lamblin G; Rubod C; Cosson M
    Int Urogynecol J; 2016 Jun; 27(6):951-7. PubMed ID: 26755057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical study on the bladder neck and urethral positions: simulation of impairment of the pelvic ligaments.
    Brandão S; Parente M; Mascarenhas T; da Silva AR; Ramos I; Jorge RN
    J Biomech; 2015 Jan; 48(2):217-23. PubMed ID: 25527889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathophysiological aspects of cystocele with a 3D finite elements model.
    Lamblin G; Mayeur O; Giraudet G; Jean Dit Gautier E; Chene G; Brieu M; Rubod C; Cosson M
    Arch Gynecol Obstet; 2016 Nov; 294(5):983-989. PubMed ID: 27402504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of urethral support using MRI-derived computational modeling of the female pelvis.
    Peng Y; Khavari R; Nakib NA; Boone TB; Zhang Y
    Int Urogynecol J; 2016 Feb; 27(2):205-12. PubMed ID: 26224383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z; Wan C; Gao X; Ji T
    J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modelling of crural fascia mechanical interaction with muscular compartments.
    Pavan PG; Pachera P; Natali AN
    Proc Inst Mech Eng H; 2015 May; 229(5):395-402. PubMed ID: 25991717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experiments and finite element modelling for the study of prolapse in the pelvic floor system.
    Venugopala Rao G; Rubod C; Brieu M; Bhatnagar N; Cosson M
    Comput Methods Biomech Biomed Engin; 2010 Jun; 13(3):349-57. PubMed ID: 20099169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of interaction phenomena between crural fascia and muscles by using a three-dimensional numerical model.
    Pavan PG; Pachera P; Forestiero A; Natali AN
    Med Biol Eng Comput; 2017 Sep; 55(9):1683-1691. PubMed ID: 28188469
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.