These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 34783654)
1. The Lyme disease agent co-opts adiponectin receptor-mediated signaling in its arthropod vector. Tang X; Cao Y; Arora G; Hwang J; Sajid A; Brown CL; Mehta S; Marín-López A; Chuang YM; Wu MJ; Ma H; Pal U; Narasimhan S; Fikrig E Elife; 2021 Nov; 10():. PubMed ID: 34783654 [TBL] [Abstract][Full Text] [Related]
2. A dityrosine network mediated by dual oxidase and peroxidase influences the persistence of Lyme disease pathogens within the vector. Yang X; Smith AA; Williams MS; Pal U J Biol Chem; 2014 May; 289(18):12813-22. PubMed ID: 24662290 [TBL] [Abstract][Full Text] [Related]
3. The abundance of the Lyme disease pathogen Borrelia afzelii declines over time in the tick vector Ixodes ricinus. Jacquet M; Genné D; Belli A; Maluenda E; Sarr A; Voordouw MJ Parasit Vectors; 2017 May; 10(1):257. PubMed ID: 28545520 [TBL] [Abstract][Full Text] [Related]
5. Regulatory protein BBD18 of the lyme disease spirochete: essential role during tick acquisition? Hayes BM; Dulebohn DP; Sarkar A; Tilly K; Bestor A; Ambroggio X; Rosa PA mBio; 2014 Apr; 5(2):e01017-14. PubMed ID: 24692636 [TBL] [Abstract][Full Text] [Related]
6. An Ixodes scapularis Protein Disulfide Isomerase Contributes to Borrelia burgdorferi Colonization of the Vector. Cao Y; Rosen C; Arora G; Gupta A; Booth CJ; Murfin KE; Cerny J; Marin Lopez A; Chuang YM; Tang X; Pal U; Ring A; Narasimhan S; Fikrig E Infect Immun; 2020 Nov; 88(12):. PubMed ID: 32928964 [No Abstract] [Full Text] [Related]
7. Functional insights into recombinant TROSPA protein from Ixodes ricinus. Figlerowicz M; Urbanowicz A; Lewandowski D; Jodynis-Liebert J; Sadowski C PLoS One; 2013; 8(10):e76848. PubMed ID: 24204685 [TBL] [Abstract][Full Text] [Related]
8. Differential expression of Ixodes ricinus salivary gland proteins in the presence of the Borrelia burgdorferi sensu lato complex. Cotté V; Sabatier L; Schnell G; Carmi-Leroy A; Rousselle JC; Arsène-Ploetze F; Malandrin L; Sertour N; Namane A; Ferquel E; Choumet V J Proteomics; 2014 Jan; 96():29-43. PubMed ID: 24189444 [TBL] [Abstract][Full Text] [Related]
10. BBE31 from the Lyme disease agent Borrelia burgdorferi, known to play an important role in successful colonization of the mammalian host, shows the ability to bind glutathione. Brangulis K; Akopjana I; Petrovskis I; Kazaks A; Zelencova D; Jekabsons A; Jaudzems K; Tars K Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129499. PubMed ID: 31785327 [TBL] [Abstract][Full Text] [Related]
11. Multiomics Reveals Symbionts, Pathogens, and Tissue-Specific Microbiome of Blacklegged Ticks (Ixodes scapularis) from a Lyme Disease Hot Spot in Southeastern Ontario, Canada. Paulson AR; Lougheed SC; Huang D; Colautti RI Microbiol Spectr; 2023 Jun; 11(3):e0140423. PubMed ID: 37184407 [TBL] [Abstract][Full Text] [Related]
12. Temporal changes in outer surface proteins A and C of the lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. Schwan TG; Piesman J J Clin Microbiol; 2000 Jan; 38(1):382-8. PubMed ID: 10618120 [TBL] [Abstract][Full Text] [Related]
13. A tick antioxidant facilitates the Lyme disease agent's successful migration from the mammalian host to the arthropod vector. Narasimhan S; Sukumaran B; Bozdogan U; Thomas V; Liang X; DePonte K; Marcantonio N; Koski RA; Anderson JF; Kantor F; Fikrig E Cell Host Microbe; 2007 Jul; 2(1):7-18. PubMed ID: 18005713 [TBL] [Abstract][Full Text] [Related]
14. Interactions Between Ticks and Lyme Disease Spirochetes. Pal U; Kitsou C; Drecktrah D; Yaş ÖB; Fikrig E Curr Issues Mol Biol; 2021; 42():113-144. PubMed ID: 33289683 [No Abstract] [Full Text] [Related]
15. Identification of Lyme borreliae proteins promoting vertebrate host blood-specific spirochete survival in Ixodes scapularis nymphs using artificial feeding chambers. Hart T; Yang X; Pal U; Lin YP Ticks Tick Borne Dis; 2018 Jul; 9(5):1057-1063. PubMed ID: 29653905 [TBL] [Abstract][Full Text] [Related]
16. Metabolomics of the tick-Borrelia interaction during the nymphal tick blood meal. Hoxmeier JC; Fleshman AC; Broeckling CD; Prenni JE; Dolan MC; Gage KL; Eisen L Sci Rep; 2017 Mar; 7():44394. PubMed ID: 28287618 [TBL] [Abstract][Full Text] [Related]
17. Infection history of the blood-meal host dictates pathogenic potential of the Lyme disease spirochete within the feeding tick vector. Bhatia B; Hillman C; Carracoi V; Cheff BN; Tilly K; Rosa PA PLoS Pathog; 2018 Apr; 14(4):e1006959. PubMed ID: 29621350 [TBL] [Abstract][Full Text] [Related]
18. Virulence of the Lyme disease spirochete before and after the tick bloodmeal: a quantitative assessment. Kasumba IN; Bestor A; Tilly K; Rosa PA Parasit Vectors; 2016 Mar; 9():129. PubMed ID: 26951688 [TBL] [Abstract][Full Text] [Related]
19. A tick C1q protein alters infectivity of the Lyme disease agent by modulating interferon γ. Tang X; Arora G; Matias J; Hart T; Cui Y; Fikrig E Cell Rep; 2022 Nov; 41(8):111673. PubMed ID: 36417869 [TBL] [Abstract][Full Text] [Related]
20. Interactions between Borrelia burgdorferi and ticks. Kurokawa C; Lynn GE; Pedra JHF; Pal U; Narasimhan S; Fikrig E Nat Rev Microbiol; 2020 Oct; 18(10):587-600. PubMed ID: 32651470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]