These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Proteomic characterization of integral membrane proteins using thermostatted liquid chromatography coupled with tandem mass spectrometry. Moore SM; Wu CC Methods Mol Biol; 2012; 914():155-64. PubMed ID: 22976027 [TBL] [Abstract][Full Text] [Related]
10. Surfaceome Analysis Protocol for the Identification of Novel Bordetella pertussis Antigens. Williamson YM; Whitmon J; West-Deadwyler R; Moura H; Woolfitt AR; Rees J; Schieltz DM; Barr JR Methods Mol Biol; 2018; 1722():3-20. PubMed ID: 29264795 [TBL] [Abstract][Full Text] [Related]
11. Comparison of five methods for direct extraction of surface proteins from Listeria monocytogenes for proteomic analysis by orbitrap mass spectrometry. Tiong HK; Hartson S; Muriana PM J Microbiol Methods; 2015 Mar; 110():54-60. PubMed ID: 25578509 [TBL] [Abstract][Full Text] [Related]
12. Surface-Shaving of Karlsson A; Alarcón LA; Piñeiro-Iglesias B; Jacobsson G; Skovbjerg S; Moore ERB; Kopparapu PK; Jin T; Karlsson R Microorganisms; 2024 Aug; 12(8):. PubMed ID: 39203567 [No Abstract] [Full Text] [Related]
13. Overcoming function annotation errors in the Gram-positive pathogen Streptococcus suis by a proteomics-driven approach. Rodríguez-Ortega MJ; Luque I; Tarradas C; Bárcena JA BMC Genomics; 2008 Dec; 9():588. PubMed ID: 19061494 [TBL] [Abstract][Full Text] [Related]
14. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine. Dick LW; Mehl JT; Loughney JW; Mach A; Rustandi RR; Ha S; Zhang L; Przysiecki CT; Dieter L; Hoang VM Hum Vaccin Immunother; 2015; 11(6):1518-25. PubMed ID: 25997113 [TBL] [Abstract][Full Text] [Related]
15. Proteomic and transcriptomic profiling of Staphylococcus aureus surface LPXTG-proteins: correlation with agr genotypes and adherence phenotypes. Ythier M; Resch G; Waridel P; Panchaud A; Gfeller A; Majcherczyk P; Quadroni M; Moreillon P Mol Cell Proteomics; 2012 Nov; 11(11):1123-39. PubMed ID: 22843989 [TBL] [Abstract][Full Text] [Related]
16. Immunoproteomic analysis of Brucella melitensis and identification of a new immunogenic candidate protein for the development of brucellosis subunit vaccine. Yang Y; Wang L; Yin J; Wang X; Cheng S; Lang X; Wang X; Qu H; Sun C; Wang J; Zhang R Mol Immunol; 2011 Oct; 49(1-2):175-84. PubMed ID: 21943783 [TBL] [Abstract][Full Text] [Related]
17. Surfomics: shaving live organisms for a fast proteomic identification of surface proteins. Olaya-Abril A; Jiménez-Munguía I; Gómez-Gascón L; Rodríguez-Ortega MJ J Proteomics; 2014 Jan; 97():164-76. PubMed ID: 23624344 [TBL] [Abstract][Full Text] [Related]
18. Shotgun Proteomics for Food Microorganism Detection. Abril AG; Ortea I; Barros-Velázquez J; Villa TG; Calo-Mata P Methods Mol Biol; 2021; 2259():205-213. PubMed ID: 33687717 [TBL] [Abstract][Full Text] [Related]
19. Identification of potential new protein vaccine candidates through pan-surfomic analysis of pneumococcal clinical isolates from adults. Olaya-Abril A; Jiménez-Munguía I; Gómez-Gascón L; Obando I; Rodríguez-Ortega MJ PLoS One; 2013; 8(7):e70365. PubMed ID: 23894641 [TBL] [Abstract][Full Text] [Related]
20. Membrane protein shaving with thermolysin can be used to evaluate topology predictors. Bendz M; Skwark M; Nilsson D; Granholm V; Cristobal S; Käll L; Elofsson A Proteomics; 2013 May; 13(9):1467-80. PubMed ID: 23512833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]