BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34784093)

  • 1. On-Chip Optical Nano-Tweezers for Culture-Less Fast Bacterial Viability Assessment.
    Tardif M; Picard E; Gaude V; Jager JB; Peyrade D; Hadji E; Marcoux PR
    Small; 2022 Jan; 18(4):e2103765. PubMed ID: 34784093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On chip shapeable optical tweezers.
    Renaut C; Cluzel B; Dellinger J; Lalouat L; Picard E; Peyrade D; Hadji E; de Fornel F
    Sci Rep; 2013; 3():2290. PubMed ID: 23887310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization-Dependent Plasmonic Nano-Tweezer as a Platform for On-Chip Trapping and Manipulation of Virus-Like Particles.
    Mokri K; Mozaffari MH; Farmani A
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):226-231. PubMed ID: 34665735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical tweezing using tunable optical lattices along a few-mode silicon waveguide.
    Pin C; Jager JB; Tardif M; Picard E; Hadji E; de Fornel F; Cluzel B
    Lab Chip; 2018 Jun; 18(12):1750-1757. PubMed ID: 29774333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation.
    Anastasiadi G; Leonard M; Paterson L; Macpherson WN
    Opt Express; 2018 Feb; 26(3):3557-3567. PubMed ID: 29401883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring Single Bacterial Viability in Optical Traps with a Power Sweeping Technique.
    Li H; Wang Y; Li Y; Wang W
    Anal Chem; 2022 Oct; 94(40):13921-13926. PubMed ID: 36166663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals.
    Descharmes N; Dharanipathy UP; Diao Z; Tonin M; Houdré R
    Lab Chip; 2013 Aug; 13(16):3268-74. PubMed ID: 23797114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating rod-shaped bacteria with optical tweezers.
    Zhang Z; Kimkes TEP; Heinemann M
    Sci Rep; 2019 Dec; 9(1):19086. PubMed ID: 31836805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable optical tweezers for wavelength-dependent measurements.
    Hester B; Campbell GK; López-Mariscal C; Filgueira CL; Huschka R; Halas NJ; Helmerson K
    Rev Sci Instrum; 2012 Apr; 83(4):043114. PubMed ID: 22559522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic tweezers for optical manipulation and biomedical applications.
    Tan H; Hu H; Huang L; Qian K
    Analyst; 2020 Aug; 145(17):5699-5712. PubMed ID: 32692343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal optical trap for bacterial viability.
    Mirsaidov U; Timp W; Timp K; Mir M; Matsudaira P; Timp G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021910. PubMed ID: 18850868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas.
    Righini M; Ghenuche P; Cherukulappurath S; Myroshnychenko V; García de Abajo FJ; Quidant R
    Nano Lett; 2009 Oct; 9(10):3387-91. PubMed ID: 19159322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angular and position stability of a nanorod trapped in an optical tweezers.
    Bareil PB; Sheng Y
    Opt Express; 2010 Dec; 18(25):26388-98. PubMed ID: 21164989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical tweezing and binding at high irradiation powers on black-Si.
    Shoji T; Mototsuji A; Balčytis A; Linklater D; Juodkazis S; Tsuboi Y
    Sci Rep; 2017 Sep; 7(1):12298. PubMed ID: 28951618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.
    van Leest T; Caro J
    Lab Chip; 2013 Nov; 13(22):4358-65. PubMed ID: 24057009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical capsule and tweezer array for molecular motor use.
    Yupapin PP; Kulsirirat K; Techithdeera W
    IEEE Trans Nanobioscience; 2013 Sep; 12(3):222-7. PubMed ID: 23955778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Cell Isolation Using Optical Tweezers.
    Keloth A; Anderson O; Risbridger D; Paterson L
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dressing plasmon resonance with particle-microcavity architecture for efficient nano-optical trapping and sensing.
    Zhang H; Zhou Y; Yu X; Luan F; Xu J; Ong HC; Ho HP
    Opt Lett; 2014 Feb; 39(4):873-6. PubMed ID: 24562229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.