BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 34784181)

  • 1. Biomimetic Approaches for the Design and Fabrication of Bone-to-Soft Tissue Interfaces.
    Pitta Kruize C; Panahkhahi S; Putra NE; Diaz-Payno P; van Osch G; Zadpoor AA; Mirzaali MJ
    ACS Biomater Sci Eng; 2023 Jul; 9(7):3810-3831. PubMed ID: 34784181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering.
    Wang S; Zhao S; Yu J; Gu Z; Zhang Y
    Small; 2022 Sep; 18(36):e2201869. PubMed ID: 35713246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicellular Bioprinting of Biomimetic Inks for Tendon-to-Bone Regeneration.
    Du L; Qin C; Zhang H; Han F; Xue J; Wang Y; Wu J; Xiao Y; Huan Z; Wu C
    Adv Sci (Weinh); 2023 Jul; 10(21):e2301309. PubMed ID: 37119499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions.
    Jalandhra GK; Molley TG; Hung TT; Roohani I; Kilian KA
    Acta Biomater; 2023 Jan; 156():75-87. PubMed ID: 36055612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing for the design and fabrication of polymer-based gradient scaffolds.
    Bracaglia LG; Smith BT; Watson E; Arumugasaamy N; Mikos AG; Fisher JP
    Acta Biomater; 2017 Jul; 56():3-13. PubMed ID: 28342878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradient scaffolds for osteochondral tissue engineering and regeneration.
    Zhang B; Huang J; Narayan RJ
    J Mater Chem B; 2020 Sep; 8(36):8149-8170. PubMed ID: 32776030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic Bilayered Scaffolds for Tissue Engineering: From Current Design Strategies to Medical Applications.
    Bertsch C; Maréchal H; Gribova V; Lévy B; Debry C; Lavalle P; Fath L
    Adv Healthc Mater; 2023 Jul; 12(17):e2203115. PubMed ID: 36807830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and bioprinting for tissue interfaces.
    Altunbek M; Afghah F; Caliskan OS; Yoo JJ; Koc B
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36716498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques.
    Zhang T; Zhang H; Zhang L; Jia S; Liu J; Xiong Z; Sun W
    Biofabrication; 2017 May; 9(2):025021. PubMed ID: 28462906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicompartmental Scaffolds for Coordinated Periodontal Tissue Engineering.
    Yao Y; Raymond JE; Kauffmann F; Maekawa S; Sugai JV; Lahann J; Giannobile WV
    J Dent Res; 2022 Nov; 101(12):1457-1466. PubMed ID: 35689382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic stratified scaffold design for ligament-to-bone interface tissue engineering.
    Lu HH; Spalazzi JP
    Comb Chem High Throughput Screen; 2009 Jul; 12(6):589-97. PubMed ID: 19601756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering complex orthopaedic tissues via strategic biomimicry.
    Qu D; Mosher CZ; Boushell MK; Lu HH
    Ann Biomed Eng; 2015 Mar; 43(3):697-717. PubMed ID: 25465616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilayer scaffolds in orthopaedic tissue engineering.
    Atesok K; Doral MN; Karlsson J; Egol KA; Jazrawi LM; Coelho PG; Martinez A; Matsumoto T; Owens BD; Ochi M; Hurwitz SR; Atala A; Fu FH; Lu HH; Rodeo SA
    Knee Surg Sports Traumatol Arthrosc; 2016 Jul; 24(7):2365-73. PubMed ID: 25466277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in the Fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft.
    Bisht B; Hope A; Mukherjee A; Paul MK
    Ann Biomed Eng; 2021 Apr; 49(4):1128-1150. PubMed ID: 33674908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects.
    Anandhapadman A; Venkateswaran A; Jayaraman H; Veerabadran Ghone N
    Biotechnol Prog; 2022 May; 38(3):e3234. PubMed ID: 35037419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone.
    Neufurth M; Wang X; Wang S; Steffen R; Ackermann M; Haep ND; Schröder HC; Müller WEG
    Acta Biomater; 2017 Dec; 64():377-388. PubMed ID: 28966095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designed Microbial Biosynthesis of Hierarchical Bone-Mimetic Biocomposites in 3D-Printed Soft Bioreactors.
    Liu S; Yang M; Barton H; Xu W
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):5513-5521. PubMed ID: 38261734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs.
    Tavafoghi M; Darabi MA; Mahmoodi M; Tutar R; Xu C; Mirjafari A; Billi F; Swieszkowski W; Nasrollahi F; Ahadian S; Hosseini V; Khademhosseini A; Ashammakhi N
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34130266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.