These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34784283)

  • 1. Dynamic Pooling Improves Nanopore Base Calling Accuracy.
    Boza V; Peresini P; Brejova B; Vinar T
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3416-3424. PubMed ID: 34784283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanopore base calling on the edge.
    Perešíni P; Boža V; Brejová B; Vinař T
    Bioinformatics; 2021 Dec; 37(24):4661-4667. PubMed ID: 34314502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepNano-blitz: a fast base caller for MinION nanopore sequencers.
    Boža V; Perešíni P; Brejová B; Vinař T
    Bioinformatics; 2020 Aug; 36(14):4191-4192. PubMed ID: 32374816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads.
    Boža V; Brejová B; Vinař T
    PLoS One; 2017; 12(6):e0178751. PubMed ID: 28582401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNAscent v2: detecting replication forks in nanopore sequencing data with deep learning.
    Boemo MA
    BMC Genomics; 2021 Jun; 22(1):430. PubMed ID: 34107894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NanoSNP: a progressive and haplotype-aware SNP caller on low-coverage nanopore sequencing data.
    Huang N; Xu M; Nie F; Ni P; Xiao CL; Luo F; Wang J
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36548365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ReadBouncer: precise and scalable adaptive sampling for nanopore sequencing.
    Ulrich JU; Lutfi A; Rutzen K; Renard BY
    Bioinformatics; 2022 Jun; 38(Suppl 1):i153-i160. PubMed ID: 35758774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Icarust, a real-time simulator for Oxford Nanopore adaptive sampling.
    Munro R; Wibowo S; Payne A; Loose M
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38478392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepSimulator1.5: a more powerful, quicker and lighter simulator for Nanopore sequencing.
    Li Y; Wang S; Bi C; Qiu Z; Li M; Gao X
    Bioinformatics; 2020 Apr; 36(8):2578-2580. PubMed ID: 31913436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel algorithms for efficient subsequence searching and mapping in nanopore raw signals towards targeted sequencing.
    Han R; Wang S; Gao X
    Bioinformatics; 2020 Mar; 36(5):1333-1343. PubMed ID: 31593235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MSRCall: a multi-scale deep neural network to basecall Oxford Nanopore sequences.
    Yeh YM; Lu YC
    Bioinformatics; 2022 Aug; 38(16):3877-3884. PubMed ID: 35766808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time mapping of nanopore raw signals.
    Zhang H; Li H; Jain C; Cheng H; Au KF; Li H; Aluru S
    Bioinformatics; 2021 Jul; 37(Suppl_1):i477-i483. PubMed ID: 34252938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WarpSTR: determining tandem repeat lengths using raw nanopore signals.
    Sitarčík J; Vinař T; Brejová B; Krampl W; Budiš J; Radvánszky J; Lucká M
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37326967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clair3-trio: high-performance Nanopore long-read variant calling in family trios with trio-to-trio deep neural networks.
    Su J; Zheng Z; Ahmed SS; Lam TW; Luo R
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SACall: A Neural Network Basecaller for Oxford Nanopore Sequencing Data Based on Self-Attention Mechanism.
    Huang N; Nie F; Ni P; Luo F; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):614-623. PubMed ID: 33211664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files.
    Payne A; Holmes N; Rakyan V; Loose M
    Bioinformatics; 2019 Jul; 35(13):2193-2198. PubMed ID: 30462145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage.
    Noakes MT; Brinkerhoff H; Laszlo AH; Derrington IM; Langford KW; Mount JW; Bowman JL; Baker KS; Doering KM; Tickman BI; Gundlach JH
    Nat Biotechnol; 2019 Jun; 37(6):651-656. PubMed ID: 31011178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks.
    Wick RR; Judd LM; Holt KE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006583. PubMed ID: 30458005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RODAN: a fully convolutional architecture for basecalling nanopore RNA sequencing data.
    Neumann D; Reddy ASN; Ben-Hur A
    BMC Bioinformatics; 2022 Apr; 23(1):142. PubMed ID: 35443610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepMP: a deep learning tool to detect DNA base modifications on Nanopore sequencing data.
    Bonet J; Chen M; Dabad M; Heath S; Gonzalez-Perez A; Lopez-Bigas N; Lagergren J
    Bioinformatics; 2022 Feb; 38(5):1235-1243. PubMed ID: 34718417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.