These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34784284)

  • 1. Checking Phylogenetics Decisiveness in Theory and in Practice.
    Parvini G; Braught K; Fernandez-Baca D
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3307-3316. PubMed ID: 34784284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenomics with incomplete taxon coverage: the limits to inference.
    Sanderson MJ; McMahon MM; Steel M
    BMC Evol Biol; 2010 May; 10():155. PubMed ID: 20500873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ILP solution for the gene duplication problem.
    Chang WC; Burleigh GJ; Fernández-Baca DF; Eulenstein O
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S14. PubMed ID: 21342543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The prevalence of terraced treescapes in analyses of phylogenetic data sets.
    Dobrin BH; Zwickl DJ; Sanderson MJ
    BMC Evol Biol; 2018 Apr; 18(1):46. PubMed ID: 29618314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.
    Lyubetsky V; Gershgorin R; Gorbunov K
    BMC Bioinformatics; 2017 Dec; 18(1):537. PubMed ID: 29212445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SUMAC: Constructing Phylogenetic Supermatrices and Assessing Partially Decisive Taxon Coverage.
    Freyman WA
    Evol Bioinform Online; 2015; 11():263-6. PubMed ID: 26648681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Multi-State Perfect Phylogeny Problem with missing and removable data: solutions via integer-programming and chordal graph theory.
    Gusfield D
    J Comput Biol; 2010 Mar; 17(3):383-99. PubMed ID: 20377452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed integer linear programming for maximum-parsimony phylogeny inference.
    Sridhar S; Lam F; Blelloch GE; Ravi R; Schwartz R
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(3):323-31. PubMed ID: 18670037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data decisiveness, data quality, and incongruence in phylogenetic analysis: an example from the monocotyledons using mitochondrial atp A sequences.
    Davis JI; Simmons MP; Stevenson DW; Wendel JF
    Syst Biol; 1998 Jun; 47(2):282-310. PubMed ID: 12064229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithms for MDC-based multi-locus phylogeny inference: beyond rooted binary gene trees on single alleles.
    Yu Y; Warnow T; Nakhleh L
    J Comput Biol; 2011 Nov; 18(11):1543-59. PubMed ID: 22035329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees.
    Baste J; Paul C; Sau I; Scornavacca C
    Bull Math Biol; 2017 Apr; 79(4):920-938. PubMed ID: 28247121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic Flexibility via Hall-Type Inequalities and Submodularity.
    Huber KT; Moulton V; Steel M
    Bull Math Biol; 2019 Feb; 81(2):598-617. PubMed ID: 29589255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Better ILP models for haplotype assembly.
    Etemadi M; Bagherian M; Chen ZZ; Wang L
    BMC Bioinformatics; 2018 Feb; 19(Suppl 1):52. PubMed ID: 29504891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized buneman pruning for inferring the most parsimonious multi-state phylogeny.
    Misra N; Blelloch G; Ravi R; Schwartz R
    J Comput Biol; 2011 Mar; 18(3):445-57. PubMed ID: 21385046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computing Manhattan Path-Difference Median Trees: A Practical Local Search Approach.
    Markin A; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1063-1076. PubMed ID: 28650824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cophylogenetic Reconciliation with ILP.
    Wieseke N; Hartmann T; Bernt M; Middendorf M
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1227-35. PubMed ID: 26671795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taming the Duplication-Loss-Coalescence Model with Integer Linear Programming.
    Paszek J; Markin A; Górecki P; Eulenstein O
    J Comput Biol; 2021 Aug; 28(8):758-773. PubMed ID: 34125600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computing the minimum recombinant haplotype configuration from incomplete genotype data on a pedigree by integer linear programming.
    Li J; Jiang T
    J Comput Biol; 2005; 12(6):719-39. PubMed ID: 16108713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. imPhy: Imputing Phylogenetic Trees with Missing Information Using Mathematical Programming.
    Yasui N; Vogiatzis C; Yoshida R; Fukumizu K
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1222-1230. PubMed ID: 30507538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified ILP framework for core ancestral genome reconstruction problems.
    Avdeyev P; Alexeev N; Rong Y; Alekseyev MA
    Bioinformatics; 2020 May; 36(10):2993-3003. PubMed ID: 32058559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.