BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34784446)

  • 21. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts.
    Zhang X; Zhang Q; Wang T; Ma L; Yu Y; Chen L
    Bioresour Technol; 2013 Apr; 134():73-80. PubMed ID: 23500562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent.
    Fu D; Farag S; Chaouki J; Jessop PG
    Bioresour Technol; 2014 Feb; 154():101-8. PubMed ID: 24384316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective lignin arylation for biomass fractionation and benign bisphenols.
    Li N; Yan K; Rukkijakan T; Liang J; Liu Y; Wang Z; Nie H; Muangmeesri S; Castiella-Ona G; Pan X; Zhou Q; Jiang G; Zhou G; Ralph J; Samec JSM; Wang F
    Nature; 2024 Jun; 630(8016):381-386. PubMed ID: 38811733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuning the Selectivity of the Hydrogenation/Hydrogenolysis of 5-Hydroxymethylfurfural under Batch Multiphase and Continuous-Flow Conditions.
    Rodríguez-Padrón D; Perosa A; Longo L; Luque R; Selva M
    ChemSusChem; 2022 Jul; 15(13):e202200503. PubMed ID: 35762402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.
    Chang X; Liu AF; Cai B; Luo JY; Pan H; Huang YB
    ChemSusChem; 2016 Dec; 9(23):3330-3337. PubMed ID: 27863073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lignin Stabilization and Carbohydrate Nature in H-transfer Reductive Catalytic Fractionation: The Role of Solvent Fractionation of Lignin Oil in Structural Profiling.
    Rinken R; Posthuma D; Rinaldi R
    ChemSusChem; 2023 Feb; 16(3):e202201875. PubMed ID: 36469562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strategy for Extending the Stability of Bio-oil-Derived Phenolic Oligomers by Mild Hydrotreatment with Ionic-Liquid-Stabilized Nanoparticles.
    Kim KH; Brown RC; Daugaard T; Tivol WF; Auer M; Simmons B; Singh S
    ChemSusChem; 2017 Mar; 10(5):884-893. PubMed ID: 27992678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of Raney Ni and tungstic acid.
    Tai Z; Zhang J; Wang A; Pang J; Zheng M; Zhang T
    ChemSusChem; 2013 Apr; 6(4):652-8. PubMed ID: 23460602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous Flow Hydrogenation of Lignin-model Aromatic Compounds over Carbon-supported Noble Metals.
    Polidoro D; Selva M; Luque R
    ChemSusChem; 2023 Aug; 16(15):e202300318. PubMed ID: 37014114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of hydrocarbons and phenols in catalytic pyrolysis bio-oil by employing aluminum hydroxide nanoparticle based spent adsorbent derived catalysts.
    Gupta S; Lanjewar R; Mondal P
    Chemosphere; 2022 Jan; 287(Pt 3):132220. PubMed ID: 34543895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts.
    Zhao C; Kou Y; Lemonidou AA; Li X; Lercher JA
    Chem Commun (Camb); 2010 Jan; 46(3):412-4. PubMed ID: 20066309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of monomeric phenols by thermochemical conversion of biomass: a review.
    Amen-Chen C; Pakdel H; Roy C
    Bioresour Technol; 2001 Sep; 79(3):277-99. PubMed ID: 11499582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic Upstream Biorefining through Hydrogen Transfer Reactions: Understanding the Process from the Pulp Perspective.
    Ferrini P; Rezende CA; Rinaldi R
    ChemSusChem; 2016 Nov; 9(22):3171-3180. PubMed ID: 27767259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partial depolymerization of enzymolysis lignin via mild hydrogenolysis over Raney Nickel.
    Xin J; Zhang P; Wolcott MP; Zhang X; Zhang J
    Bioresour Technol; 2014 Mar; 155():422-6. PubMed ID: 24461256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective Hydrogenation of Furfural over the Co-Based Catalyst: A Subtle Synergy with Ni and Zn Dopants.
    Li S; Fan Y; Wu C; Zhuang C; Wang Y; Li X; Zhao J; Zheng Z
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8507-8517. PubMed ID: 33570382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Review of the application of bimetallic catalysts coupled with internal hydrogen donor for catalytic hydrogenolysis of lignin to produce phenolic fine chemicals.
    Ewuzie RN; Genza JR; Abdullah AZ
    Int J Biol Macromol; 2024 Apr; 265(Pt 2):131084. PubMed ID: 38521312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic Transfer Hydrogenation of Biomass-Derived Substrates to Value-Added Chemicals on Dual-Function Catalysts: Opportunities and Challenges.
    Jin X; Yin B; Xia Q; Fang T; Shen J; Kuang L; Yang C
    ChemSusChem; 2019 Jan; 12(1):71-92. PubMed ID: 30240143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergy of metallic Co and oxygen vacancy sites in Co/Ce-MOF catalysts for efficiently promoting lignin derived phenols and macromolecular lignin hydrodeoxygenation.
    Chen C; Jiang J; Liu Y; Ji X; Zhou M; Zhao J; Jiang J
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132465. PubMed ID: 38768909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ generation of Ni nanoparticles from metal-organic framework precursors and their use for biomass hydrodeoxygenation.
    Čelič TB; Grilc M; Likozar B; Tušar NN
    ChemSusChem; 2015 May; 8(10):1703-10. PubMed ID: 25755008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Composition of Lignin-to-Liquid Solvolysis Oils from Lignin Extracted in a Semi-Continuous Organosolv Process.
    Løhre C; Halleraker HV; Barth T
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28124994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.