These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34784714)

  • 1. Enantioselective Discrimination of Histidine by Means of an Achiral Cubane-Bridged Bis-Porphyrin.
    Bettini S; Grover N; Ottolini M; Mattern C; Valli L; Senge MO; Giancane G
    Langmuir; 2021 Nov; 37(47):13882-13889. PubMed ID: 34784714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the central metal ion of ethane-bridged bis-porphyrins in histidine sensing.
    Bettini S; Pagano R; Borovkov V; Giancane G; Valli L
    J Colloid Interface Sci; 2019 Jan; 533():762-770. PubMed ID: 30199832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral Enantioselective Assemblies Induced from Achiral Porphyrin by l- and d-Lysine.
    Wu S; Yin ZZ; Wu D; Tao Y; Kong Y
    Langmuir; 2019 Dec; 35(51):16761-16769. PubMed ID: 31769990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines.
    Bettini S; Maglie E; Pagano R; Borovkov V; Inoue Y; Valli L; Giancane G
    Beilstein J Nanotechnol; 2015; 6():2154-60. PubMed ID: 26665088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective recognition by a highly ordered porphyrin-assembly on a chiral molecular gel.
    Jintoku H; Takafuji M; Oda R; Ihara H
    Chem Commun (Camb); 2012 May; 48(40):4881-3. PubMed ID: 22499067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular chirogenesis in zinc porphyrins: interaction with bidentate ligands, formation of tweezer structures, and the origin of enhanced optical activity.
    Borovkov VV; Lintuluoto JM; Hembury GA; Sugiura M; Arakawa R; Inoue Y
    J Org Chem; 2003 Sep; 68(19):7176-92. PubMed ID: 12968867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, structure, and properties of a series of chiral tweezer-diamine complexes consisting of an achiral zinc(II) bisporphyrin host and chiral diamine guest: induction and rationalization of supramolecular chirality.
    Brahma S; Ikbal SA; Rath SP
    Inorg Chem; 2014 Jan; 53(1):49-62. PubMed ID: 24274749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethane-Bridged Bisporphyrin Conformational Changes As an Effective Analytical Tool for Nonenzymatic Detection of Urea in the Physiological Range.
    Buccolieri A; Hasan M; Bettini S; Bonfrate V; Salvatore L; Santino A; Borovkov V; Giancane G
    Anal Chem; 2018 Jun; 90(11):6952-6958. PubMed ID: 29727561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general method for constructing optically active supramolecular assemblies from intrinsically achiral water-insoluble free-base porphyrins.
    Zhang Y; Chen P; Liu M
    Chemistry; 2008; 14(6):1793-803. PubMed ID: 18064623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in situ generated achiral Cu(II)-containing polymer complex sensor for enantioselective recognition induced from L-/D-histidine enantiomers.
    Wei G; Meng F; Wang Y; Cheng Y; Zhu C
    Macromol Rapid Commun; 2014 Dec; 35(24):2077-81. PubMed ID: 25367559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular chirogenesis with bis-chlorin versus bis-porphyrin hosts: peculiarities of chirality induction and modulation of optical activity.
    Borovkov VV; Hembury GA; Inoue Y
    J Org Chem; 2005 Oct; 70(22):8743-54. PubMed ID: 16238305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective Dynamic Self-Assembly of Histidine Droplets on Pillar[5]arene-Modified Interfaces.
    Ma J; Yan H; Quan J; Bi J; Tian D; Li H
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1665-1671. PubMed ID: 30561183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral memory: induction, amplification, and switching in porphyrin assemblies.
    Rosaria L; D'urso A; Mammana A; Purrello R
    Chirality; 2008 Mar; 20(3-4):411-9. PubMed ID: 17806090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of anti-bisFe(III) porphyrins, syn-bisFe(III)-mu-oxo porphyrin, and syn-bisFe(III)-mu-oxo porphyrin cation radical.
    Ghosh SK; Patra R; Rath SP
    Inorg Chem; 2010 Apr; 49(7):3449-60. PubMed ID: 20218645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complexation of Chiral Zinc(II) Porphyrin Tweezer with Achiral Aliphatic Diamines
    Saha B; Petrovic AG; Dhamija A; Berova N; Rath SP
    Inorg Chem; 2019 Sep; 58(17):11420-11438. PubMed ID: 31411870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial organization of achiral porphyrins via unidirectional compression: a general method for chiroptical porphyrin assemblies of selected chirality.
    Zhang X; Wang Y; Chen P; Rong Y; Liu M
    Phys Chem Chem Phys; 2016 May; 18(20):14023-9. PubMed ID: 27156996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly enhanced bisignate circular dichroism of ferrocene-bridged Zn(II) bisporphyrin tweezer with extended chiral substrates due to well-matched host-guest system.
    Brahma S; Ikbal SA; Dhamija A; Rath SP
    Inorg Chem; 2014 Mar; 53(5):2381-95. PubMed ID: 24520860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective crystallization of histidine on chiral self-assembled films of cysteine.
    Dressler DH; Mastai Y
    J Colloid Interface Sci; 2007 Jun; 310(2):653-60. PubMed ID: 17412357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral sign induction by vortices during the formation of mesophases in stirred solutions.
    Ribó JM; Crusats J; Sagués F; Claret J; Rubires R
    Science; 2001 Jun; 292(5524):2063-6. PubMed ID: 11408653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral histidine selection by D-ribose RNA.
    Illangasekare M; Turk R; Peterson GC; Lladser M; Yarus M
    RNA; 2010 Dec; 16(12):2370-83. PubMed ID: 20940341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.