BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34785075)

  • 1. Cancer survival prognosis with Deep Bayesian Perturbation Cox Network.
    Zhang Z; Chai H; Wang Y; Pan Z; Yang Y
    Comput Biol Med; 2022 Feb; 141():105012. PubMed ID: 34785075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel non-negative Bayesian stacking modeling method for Cancer survival prediction using high-dimensional omics data.
    Shen J; Wang S; Sun H; Huang J; Bai L; Wang X; Dong Y; Tang Z
    BMC Med Res Methodol; 2024 May; 24(1):105. PubMed ID: 38702624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of censoring on learning Bayesian networks in survival modelling.
    Stajduhar I; Dalbelo-Basić B; Bogunović N
    Artif Intell Med; 2009 Nov; 47(3):199-217. PubMed ID: 19833488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models.
    Yousefi S; Amrollahi F; Amgad M; Dong C; Lewis JE; Song C; Gutman DA; Halani SH; Velazquez Vega JE; Brat DJ; Cooper LAD
    Sci Rep; 2017 Sep; 7(1):11707. PubMed ID: 28916782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian approach for analyzing partly interval-censored data under the proportional hazards model.
    Pan C; Cai B; Wang L
    Stat Methods Med Res; 2020 Nov; 29(11):3192-3204. PubMed ID: 32441211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme learning machine Cox model for high-dimensional survival analysis.
    Wang H; Li G
    Stat Med; 2019 May; 38(12):2139-2156. PubMed ID: 30632193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian parametric models for survival prediction in medical applications.
    Paolucci I; Lin YM; Albuquerque Marques Silva J; Brock KK; Odisio BC
    BMC Med Res Methodol; 2023 Oct; 23(1):250. PubMed ID: 37884857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer survival analysis using semi-supervised learning method based on Cox and AFT models with L1/2 regularization.
    Liang Y; Chai H; Liu XY; Xu ZB; Zhang H; Leung KS
    BMC Med Genomics; 2016 Mar; 9():11. PubMed ID: 26932592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Attention-Mechanism Based Cox Survival Model by Exploiting Pan-Cancer Empirical Genomic Information.
    Meng X; Wang X; Zhang X; Zhang C; Zhang Z; Zhang K; Wang S
    Cells; 2022 Apr; 11(9):. PubMed ID: 35563727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gsslasso Cox: a Bayesian hierarchical model for predicting survival and detecting associated genes by incorporating pathway information.
    Tang Z; Lei S; Zhang X; Yi Z; Guo B; Chen JY; Shen Y; Yi N
    BMC Bioinformatics; 2019 Feb; 20(1):94. PubMed ID: 30813883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data.
    Hao J; Kim Y; Mallavarapu T; Oh JH; Kang M
    BMC Med Genomics; 2019 Dec; 12(Suppl 10):189. PubMed ID: 31865908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathway aggregation for survival prediction via multiple kernel learning.
    Sinnott JA; Cai T
    Stat Med; 2018 Jul; 37(16):2501-2515. PubMed ID: 29664143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-view co-training network for semi-supervised medical image-based prognostic prediction.
    Li H; Wang S; Liu B; Fang M; Cao R; He B; Liu S; Hu C; Dong D; Wang X; Wang H; Tian J
    Neural Netw; 2023 Jul; 164():455-463. PubMed ID: 37182347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel dynamic Bayesian network approach for data mining and survival data analysis.
    Sheidaei A; Foroushani AR; Gohari K; Zeraati H
    BMC Med Inform Decis Mak; 2022 Sep; 22(1):251. PubMed ID: 36138394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometric graph neural networks on multi-omics data to predict cancer survival outcomes.
    Zhu J; Oh JH; Simhal AK; Elkin R; Norton L; Deasy JO; Tannenbaum A
    Comput Biol Med; 2023 Sep; 163():107117. PubMed ID: 37329617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Cox survival analysis with a neural-Bayesian approach.
    Bakker B; Heskes T; Neijt J; Kappen B
    Stat Med; 2004 Oct; 23(19):2989-3012. PubMed ID: 15351957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Networks with Adaptive Bayesian Learning.
    Pugalenthi K; Park H; Hussain S; Raghavan N
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The L
    Jiang HK; Liang Y
    Comput Biol Med; 2018 Sep; 100():203-208. PubMed ID: 30032047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating biological networks into high-dimensional Bayesian survival analysis using an ICM/M algorithm.
    Pungpapong V
    J Bioinform Comput Biol; 2021 Oct; 19(5):2150027. PubMed ID: 34693885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.