These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34785229)

  • 1. Simulating the effect of check dam collapse in a debris-flow channel.
    Baggio T; D'Agostino V
    Sci Total Environ; 2022 Apr; 816():151660. PubMed ID: 34785229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of artificial dam failure effects on debris flows - A case study of the Zhouqu '8.8' debris flow in northwestern China.
    Chong Y; Chen G; Meng X; Yang Y; Shi W; Bian S; Zhang Y; Yue D
    Sci Total Environ; 2021 Oct; 792():148439. PubMed ID: 34147790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How memory effects, check dams, and channel geometry control erosion and deposition by debris flows.
    de Haas T; Nijland W; de Jong SM; McArdell BW
    Sci Rep; 2020 Aug; 10(1):14024. PubMed ID: 32820204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channel control works and sediment connectivity in the European Alps.
    Marchi L; Comiti F; Crema S; Cavalli M
    Sci Total Environ; 2019 Jun; 668():389-399. PubMed ID: 30852215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Check dam storage capacity calculation based on high-resolution topogrammetry: Case study of the Cutou Gully, Wenchuan County, China.
    Huang T; Ding M; Gao Z; Téllez RD
    Sci Total Environ; 2021 Oct; 790():148083. PubMed ID: 34091330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact force of a surge of water and sediments mixtures against slit check dams.
    Rossi G; Armanini A
    Sci Total Environ; 2019 Sep; 683():351-359. PubMed ID: 31132714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based approach for design and performance evaluation of works controlling stony debris flows with an application to a case study at Rovina di Cancia (Venetian Dolomites, Northeast Italy).
    Bernard M; Boreggio M; Degetto M; Gregoretti C
    Sci Total Environ; 2019 Oct; 688():1373-1388. PubMed ID: 31726566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of methods to determine the sediment retained by check dams and to estimate erosion rates in badlands.
    Ramos-Diez I; Navarro-Hevia J; San Martín Fernández R; Díaz-Gutiérrez V; Mongil-Manso J
    Environ Monit Assess; 2016 Jul; 188(7):405. PubMed ID: 27296542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical investigation on the role of check dams with bottom outlets in debris flow mobility by 2D SPH.
    Shi H; Huang Y; Feng D
    Sci Rep; 2022 Nov; 12(1):20456. PubMed ID: 36443425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Procedures for the documentation of historical debris flows: application to the Chieppena Torrent (Italian alps).
    Marchi L; Cavalli M
    Environ Manage; 2007 Sep; 40(3):493-503. PubMed ID: 17602256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Land-use changes and check dams reducing runoff and sediment yield on the Loess Plateau of China.
    Shi P; Zhang Y; Ren Z; Yu Y; Li P; Gong J
    Sci Total Environ; 2019 May; 664():984-994. PubMed ID: 30769322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. sUAS, SfM-MVS photogrammetry and a topographic algorithm method to quantify the volume of sediments retained in check-dams.
    Alfonso-Torreño A; Gómez-Gutiérrez Á; Schnabel S; Lavado Contador JF; de Sanjosé Blasco JJ; Sánchez Fernández M
    Sci Total Environ; 2019 Aug; 678():369-382. PubMed ID: 31077915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the dynamics of a large rock landslide in the Dolomites (eastern Italian Alps) using multi-temporal DEMs.
    Gatter R; Cavalli M; Crema S; Bossi G
    PeerJ; 2018; 6():e5903. PubMed ID: 30425893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Debris-flow risk analysis in a managed torrent based on a stochastic life-cycle performance.
    Ballesteros Cánovas JA; Stoffel M; Corona C; Schraml K; Gobiet A; Tani S; Sinabell F; Fuchs S; Kaitna R
    Sci Total Environ; 2016 Jul; 557-558():142-53. PubMed ID: 26994802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of check dams in watershed management projects: Examples from around the world.
    Abbasi NA; Xu X; Lucas-Borja ME; Dang W; Liu B
    Sci Total Environ; 2019 Aug; 676():683-691. PubMed ID: 31054413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural health monitoring of sabo check dams with cosmic-ray muography.
    Oláh L; Tanaka HKM; Mori T; Sakatani Y; Varga D
    iScience; 2023 Oct; 26(10):108019. PubMed ID: 37841596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of straw bale check dams at reducing post-fire sediment yields from steep ephemeral channels.
    Robichaud PR; Storrar KA; Wagenbrenner JW
    Sci Total Environ; 2019 Aug; 676():721-731. PubMed ID: 31054416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the effects of check dams on channel geometry, bed sediment size and riparian vegetation in Mediterranean mountain torrents.
    Zema DA; Bombino G; Denisi P; Lucas-Borja ME; Zimbone SM
    Sci Total Environ; 2018 Nov; 642():327-340. PubMed ID: 29906724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disturbance and patch-specific responses: the interactive effects of woody debris and floods on lotic invertebrates.
    Palmer MA; Arensburger P; Martin AP; Denman DW
    Oecologia; 1996 Jan; 105(2):247-257. PubMed ID: 28307090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the effect of porous check dam location on fine sediment retention (a case study).
    Hassanli AM; Nameghi AE; Beecham S
    Environ Monit Assess; 2009 May; 152(1-4):319-26. PubMed ID: 18563609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.