These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 34785461)
1. Mechanistic insight into pH-dependent adsorption and coprecipitation of chelated heavy metals by in-situ formed iron (oxy)hydroxides. Yang Z; Ma J; Liu F; Zhang H; Ma X; He D J Colloid Interface Sci; 2022 Feb; 608(Pt 1):864-872. PubMed ID: 34785461 [TBL] [Abstract][Full Text] [Related]
2. Facile synthesis of economical feasible fly ash-based zeolite-supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents. Angaru GKR; Choi YL; Lingamdinne LP; Choi JS; Kim DS; Koduru JR; Yang JK; Chang YY Chemosphere; 2021 Mar; 267():128889. PubMed ID: 33187656 [TBL] [Abstract][Full Text] [Related]
3. A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation. Xu Z; Gao G; Pan B; Zhang W; Lv L Water Res; 2015 Dec; 87():378-84. PubMed ID: 26454633 [TBL] [Abstract][Full Text] [Related]
4. Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor. Pavlović J; Stopić S; Friedrich B; Kamberović Z Environ Sci Pollut Res Int; 2007 Nov; 14(7):518-22. PubMed ID: 18062485 [TBL] [Abstract][Full Text] [Related]
5. Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system. Katsou E; Malamis S; Haralambous KJ Chemosphere; 2011 Jan; 82(4):557-64. PubMed ID: 21167554 [TBL] [Abstract][Full Text] [Related]
6. Low-Fe(III) driven UV/Air process for enhanced recovery of heavy metals from EDTA complexed system. Yuan Y; Zhao W; Liu Z; Ling C; Zhu C; Liu F; Li A Water Res; 2020 Mar; 171():115375. PubMed ID: 31865128 [TBL] [Abstract][Full Text] [Related]
7. Anoxic iron electrocoagulation automatically modulates dissolved oxygen and pH for fast reductive decomplexation and precipitation of Cu(II)-EDTA: The critical role of dissolved Fe(II). Xie S; Li C; Zhan H; Shao W; Zhao Y; Liu P; Liao P J Hazard Mater; 2023 Jan; 442():130069. PubMed ID: 36182887 [TBL] [Abstract][Full Text] [Related]
8. Competitive removal of Cu-EDTA and Ni-EDTA via microwave-enhanced Fenton oxidation with hydroxide precipitation. Lin Q; Pan H; Yao K; Pan Y; Long W Water Sci Technol; 2015; 72(7):1184-90. PubMed ID: 26398034 [TBL] [Abstract][Full Text] [Related]
9. Enhanced removal of EDTA-chelated Cu(II) by polymeric anion-exchanger supported nanoscale zero-valent iron. Liu F; Shan C; Zhang X; Zhang Y; Zhang W; Pan B J Hazard Mater; 2017 Jan; 321():290-298. PubMed ID: 27637095 [TBL] [Abstract][Full Text] [Related]
10. Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater. Kent DB; Davis JA; Joye JL; Curtis GP Environ Pollut; 2008 May; 153(1):44-52. PubMed ID: 18178297 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic insight of weak magnetic field trigger transformation of amorphous Fe(III)-(oxy)hydroxide for enhanced ferrate (VI) towards selective removal of natural organic matter. Yang G; Cheng Z; Bao H; Zhang L; Zhang H; Jia H; Wang J Chemosphere; 2022 Sep; 303(Pt 2):134967. PubMed ID: 35623432 [TBL] [Abstract][Full Text] [Related]
12. Characterization of primary precipitate composition formed during co-removal of Cr(VI) with Cu(II) in synthetic wastewater. Sun JM; Zhu WT; Huang JC Environ Sci Pollut Res Int; 2006 Oct; 13(6):379-85. PubMed ID: 17120827 [TBL] [Abstract][Full Text] [Related]
13. Sequestration of free and chelated Ni(II) by structural Fe(II): Performance and mechanisms. He H; Wang J; Fei X; Wu D Environ Pollut; 2022 Jan; 292(Pt A):118374. PubMed ID: 34656684 [TBL] [Abstract][Full Text] [Related]
14. Coagulation removal of nickel (II) ions by ferric chloride: Efficiency and mechanism. Linnikov ОD; Rodina IV; Zakharova GS; Mikhalev KN; Baklanova IV; Kuznetsova YV; Germov AY; Goloborodskii BY; Tyutyunnik AP; Fattakhova ZA Water Environ Res; 2022; 94(12):e10827. PubMed ID: 36514831 [TBL] [Abstract][Full Text] [Related]
16. Coprecipitation of Fe/Cr Hydroxides at Organic-Water Interfaces: Functional Group Richness and (De)protonation Control Amounts and Compositions of Coprecipitates. Hu Y; Jiang X; Zhang S; Cai D; Zhou Z; Liu C; Zuo X; Lee SS Environ Sci Technol; 2024 May; 58(19):8501-8509. PubMed ID: 38696244 [TBL] [Abstract][Full Text] [Related]
17. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters. Wang HY; Gao HW Environ Sci Pollut Res Int; 2009 May; 16(3):339-47. PubMed ID: 18998184 [TBL] [Abstract][Full Text] [Related]
18. Adsorption characteristics of U(VI) on Fe(III)Cr(III) (oxy)hydroxides synthesized at different temperatures. Ahn H; Jo HY; Lee YJ; Kim GY J Environ Radioact; 2016 Jul; 158-159():30-7. PubMed ID: 27060782 [TBL] [Abstract][Full Text] [Related]
19. Sequestration of chelated copper by structural Fe(II): Reductive decomplexation and transformation of Cu(II)-EDTA. He H; Wu D; Zhao L; Luo C; Dai C; Zhang Y J Hazard Mater; 2016 May; 309():116-25. PubMed ID: 26878707 [TBL] [Abstract][Full Text] [Related]
20. The efficiency of removing heavy metal ions from industrial electropolishing wastewater using natural materials. Charazińska S; Burszta-Adamiak E; Lochyński P Sci Rep; 2022 Oct; 12(1):17766. PubMed ID: 36273077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]