These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34785681)

  • 1. Fluids as primary carriers of sulphur and copper in magmatic assimilation.
    Virtanen VJ; Heinonen JS; Molnár F; Schmidt MW; Marxer F; Skyttä P; Kueter N; Moslova K
    Nat Commun; 2021 Nov; 12(1):6609. PubMed ID: 34785681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal alteration and Cu-Ni-PGE mobilization in the charnockitic rocks of the footwall of the South Kawishiwi intrusion, Duluth Complex, USA.
    Benkó Z; Mogessie A; Molnár F; Krenn K; Poulson SR; Hauck S; Severson M; Arehart GB
    Ore Geol Rev; 2015 Jun; 67():170-188. PubMed ID: 26594080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The critical role of magma degassing in sulphide melt mobility and metal enrichment.
    Iacono-Marziano G; Le Vaillant M; Godel BM; Barnes SJ; Arbaret L
    Nat Commun; 2022 Apr; 13(1):2359. PubMed ID: 35487923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tempo of magma degassing and the genesis of porphyry copper deposits.
    Chelle-Michou C; Rottier B; Caricchi L; Simpson G
    Sci Rep; 2017 Jan; 7():40566. PubMed ID: 28079160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why large porphyry Cu deposits like high Sr/Y magmas?
    Chiaradia M; Ulianov A; Kouzmanov K; Beate B
    Sci Rep; 2012; 2():685. PubMed ID: 23008750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Petroleum as source and carrier of metals in epigenetic sediment-hosted mineralization.
    Saintilan NJ; Spangenberg JE; Chiaradia M; Chelle-Michou C; Stephens MB; Fontboté L
    Sci Rep; 2019 Jun; 9(1):8283. PubMed ID: 31164692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga.
    Meng X; Kleinsasser JM; Richards JP; Tapster SR; Jugo PJ; Simon AC; Kontak DJ; Robb L; Bybee GM; Marsh JH; Stern RA
    Nat Commun; 2021 Apr; 12(1):2189. PubMed ID: 33850122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment.
    Chiaradia M; Caricchi L
    Sci Rep; 2017 Mar; 7():44523. PubMed ID: 28295045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA.
    Jones DS; Lapakko KA; Wenz ZJ; Olson MC; Roepke EW; Sadowsky MJ; Novak PJ; Bailey JV
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Rustenburg Layered Suite formed as a stack of mush with transient magma chambers.
    Yao Z; Mungall JE; Jenkins MC
    Nat Commun; 2021 Jan; 12(1):505. PubMed ID: 33479217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experiments on Cu-isotope fractionation between chlorine-bearing fluid and silicate magma: implications for fluid exsolution and porphyry Cu deposits.
    Guo H; Xia Y; Bai R; Zhang X; Huang F
    Natl Sci Rev; 2020 Aug; 7(8):1319-1330. PubMed ID: 34692160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melt inclusions in veins: linking magmas and porphyry Cu deposits.
    Harris AC; Kamenetsky VS; White NC; van Achterbergh E; Ryan CG
    Science; 2003 Dec; 302(5653):2109-11. PubMed ID: 14684818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origin of Cu/Au ratios in porphyry-type ore deposits.
    Halter WE; Pettke T; Heinrich CA
    Science; 2002 Jun; 296(5574):1844-6. PubMed ID: 12052953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfur and metal fertilization of the lower continental crust.
    Locmelis M; Fiorentini ML; Rushmer T; Arevalo R; Adam J; Denyszyn SW
    Lithos; 2016 Feb; 244():74-93. PubMed ID: 32908321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobilisation of deep crustal sulfide melts as a first order control on upper lithospheric metallogeny.
    Holwell DA; Fiorentini ML; Knott TR; McDonald I; Blanks DE; Campbell McCuaig T; Gorczyk W
    Nat Commun; 2022 Jan; 13(1):573. PubMed ID: 35102157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation.
    Giuliani A; Pearson DG; Soltys A; Dalton H; Phillips D; Foley SF; Lim E; Goemann K; Griffin WL; Mitchell RH
    Sci Adv; 2020 Apr; 6(17):eaaz0424. PubMed ID: 32494633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gravimetric procedure for the determination of wet precipitated sulphur, dissolved sulphur, soluble sulphides and hydrogen sulphide.
    Padma DK
    Talanta; 1986 Jun; 33(6):550-2. PubMed ID: 18964139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid change in magma plumbing taps porphyry copper deposit-forming magmas.
    Carter LC; Tapster SR; Williamson BJ; Buret Y; Selby D; Rollinson GK; Millar I; Parvaz DB
    Sci Rep; 2022 Oct; 12(1):17272. PubMed ID: 36241642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulphur retention and in-situ preparation of metal sulphide catalysts during activation of petroleum coke.
    Xiao Y; Montes V; Hill JM
    Chemosphere; 2022 Dec; 308(Pt 2):136340. PubMed ID: 36087736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Petrological and experimental evidence for differentiation of water-rich magmas beneath St. Kitts, Lesser Antilles.
    Melekhova E; Blundy J; Martin R; Arculus R; Pichavant M
    Contrib Mineral Petrol; 2017; 172(11):98. PubMed ID: 32009663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.