These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34785705)

  • 1. A movable type bioelectronics printing technology for modular fabrication of biosensors.
    Yang M; Liu M; Cheng J; Wang H
    Sci Rep; 2021 Nov; 11(1):22323. PubMed ID: 34785705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic Layer-by-Layer Assembly of Transferable Enzymatic Conductive Nanonetworks for Enzyme-Sticker-Based Contact Printing of Electrochemical Biosensors.
    Lee SW; Kang TH; Lee SK; Lee KY; Yi H
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36267-36274. PubMed ID: 30259729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphoton Lithography of Organic Semiconductor Devices for 3D Printing of Flexible Electronic Circuits, Biosensors, and Bioelectronics.
    Dadras-Toussi O; Khorrami M; Louis Sam Titus ASC; Majd S; Mohan C; Abidian MR
    Adv Mater; 2022 Jul; 34(30):e2200512. PubMed ID: 35707927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices.
    Kim J; Jeerapan I; Sempionatto JR; Barfidokht A; Mishra RK; Campbell AS; Hubble LJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2820-2828. PubMed ID: 30398344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional nanostructures for enzyme based biosensors: properties, fabrication and applications.
    Othman A; Karimi A; Andreescu S
    J Mater Chem B; 2016 Dec; 4(45):7178-7203. PubMed ID: 32263721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printed Electrochemical Biosensors: Opportunities and Metrological Challenges.
    Sardini E; Serpelloni M; Tonello S
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33158129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Electrochemical-Based Bioelectronic Device and Biosensor Composed of Biomaterial-Nanomaterial Hybrid.
    Mohammadniaei M; Park C; Min J; Sohn H; Lee T
    Adv Exp Med Biol; 2018; 1064():263-296. PubMed ID: 30471039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalized Organic Thin Film Transistors for Biosensing.
    Wang N; Yang A; Fu Y; Li Y; Yan F
    Acc Chem Res; 2019 Feb; 52(2):277-287. PubMed ID: 30620566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent developments in nanotechnology-based printing electrode systems for electrochemical sensors.
    Ambaye AD; Kefeni KK; Mishra SB; Nxumalo EN; Ntsendwana B
    Talanta; 2021 Apr; 225():121951. PubMed ID: 33592706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation.
    Mohd Asri MA; Nordin AN; Ramli N
    Biomicrofluidics; 2021 Dec; 15(6):061502. PubMed ID: 34777677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in gold electrode fabrication for low-resource setting biosensing.
    Zamani M; Klapperich CM; Furst AL
    Lab Chip; 2023 Mar; 23(5):1410-1419. PubMed ID: 36602146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Laser 3D Printing of Organic Semiconductor Microdevices for Bioelectronics and Biosensors.
    Dadras-Toussi O; Raghunathan V; Majd S; Abidian MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1569-1572. PubMed ID: 36085618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-Inkjet-Printed Flexible Nanobio-Devices with Efficient Electrochemical Coupling Using Amphiphilic Biomaterials.
    Kang TH; Lee SW; Hwang K; Shim W; Lee KY; Lim JA; Yu WR; Choi IS; Yi H
    ACS Appl Mater Interfaces; 2020 May; 12(21):24231-24241. PubMed ID: 32353230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis.
    Yu Y; Nyein HYY; Gao W; Javey A
    Adv Mater; 2020 Apr; 32(15):e1902083. PubMed ID: 31432573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling-up medical technologies using flexographic printing.
    Assaifan AK; Al Habis N; Ahmad I; Alshehri NA; Alharbi HF
    Talanta; 2020 Nov; 219():121236. PubMed ID: 32887127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose biosensor based on disposable electrochemical paper-based transducers fully fabricated by screen-printing.
    Lamas-Ardisana PJ; Martínez-Paredes G; Añorga L; Grande HJ
    Biosens Bioelectron; 2018 Jun; 109():8-12. PubMed ID: 29522970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the intersection of molecular bioelectronics and biosensors: 20 Years of C3B.
    Aggas JR; Walther BK; Abasi S; Kotanen CN; Karunwi O; Wilson AM; Guiseppi-Elie A
    Biosens Bioelectron; 2021 Mar; 176():112889. PubMed ID: 33358581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Nonstick Replica Mold for Transfer Printing of Ag Ink.
    Lee BK; Yu HY; Kim Y; Yoon YS; Jang WI; Do LM; Park JH; Park J
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2682-6. PubMed ID: 27455689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate.
    Weng B; Morrin A; Shepherd R; Crowley K; Killard AJ; Innis PC; Wallace GG
    J Mater Chem B; 2014 Feb; 2(7):793-799. PubMed ID: 32261311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating nanoscale structure to control functionality in printed organic photovoltaic, transistor and bioelectronic devices.
    Griffith MJ; Holmes NP; Elkington DC; Cottam S; Stamenkovic J; Kilcoyne ALD; Andersen TR
    Nanotechnology; 2020 Feb; 31(9):092002. PubMed ID: 31726444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.