BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34786675)

  • 1. RNA-Seq Data Analysis Pipeline for Plants: Transcriptome Assembly, Alignment, and Differential Expression Analysis.
    Burks DJ; Azad RK
    Methods Mol Biol; 2022; 2396():47-60. PubMed ID: 34786675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-Seq in Nonmodel Organisms.
    Chalifa-Caspi V
    Methods Mol Biol; 2021; 2243():143-167. PubMed ID: 33606257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly-free rapid differential gene expression analysis in non-model organisms using DNA-protein alignment.
    Shrestha AMS; B Guiao JE; R Santiago KC
    BMC Genomics; 2022 Feb; 23(1):97. PubMed ID: 35120462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. transXpress: a Snakemake pipeline for streamlined de novo transcriptome assembly and annotation.
    Fallon TR; Čalounová T; Mokrejš M; Weng JK; Pluskal T
    BMC Bioinformatics; 2023 Apr; 24(1):133. PubMed ID: 37016291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads.
    Martin J; Bruno VM; Fang Z; Meng X; Blow M; Zhang T; Sherlock G; Snyder M; Wang Z
    BMC Genomics; 2010 Nov; 11():663. PubMed ID: 21106091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Necklace: combining reference and assembled transcriptomes for more comprehensive RNA-Seq analysis.
    Davidson NM; Oshlack A
    Gigascience; 2018 May; 7(5):. PubMed ID: 29722876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compacta: a fast contig clustering tool for de novo assembled transcriptomes.
    Razo-Mendivil FG; Martínez O; Hayano-Kanashiro C
    BMC Genomics; 2020 Feb; 21(1):148. PubMed ID: 32046653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CAARS: comparative assembly and annotation of RNA-Seq data.
    Rey C; Veber P; Boussau B; Sémon M
    Bioinformatics; 2019 Jul; 35(13):2199-2207. PubMed ID: 30452539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A differential k-mer analysis pipeline for comparing RNA-Seq transcriptome and meta-transcriptome datasets without a reference.
    Chan CK; Rosic N; Lorenc MT; Visendi P; Lin M; Kaniewska P; Ferguson BJ; Gresshoff PM; Batley J; Edwards D
    Funct Integr Genomics; 2019 Mar; 19(2):363-371. PubMed ID: 30483906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-quality annotated transcriptome of swine peripheral blood.
    Liu H; Smith TPL; Nonneman DJ; Dekkers JCM; Tuggle CK
    BMC Genomics; 2017 Jun; 18(1):479. PubMed ID: 28646867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis.
    Wang S; Gribskov M
    Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data.
    Duan J; Xia C; Zhao G; Jia J; Kong X
    BMC Genomics; 2012 Aug; 13():392. PubMed ID: 22891638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using RNentropy to Detect Significant Variation in Gene Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq Samples.
    Zambelli F; Pavesi G
    Methods Mol Biol; 2021; 2284():77-96. PubMed ID: 33835439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-seq Data Analysis for Differential Expression.
    Gill N; Dhillon B
    Methods Mol Biol; 2022; 2391():45-54. PubMed ID: 34686975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms.
    Gan RC; Chen TW; Wu TH; Huang PJ; Lee CC; Yeh YM; Chiu CH; Huang HD; Tang P
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):513. PubMed ID: 28155708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast functional profiling of RNA-seq data for nonmodel organisms.
    Liu P; Ewald J; Galvez JH; Head J; Crump D; Bourque G; Basu N; Xia J
    Genome Res; 2021 Apr; 31(4):713-720. PubMed ID: 33731361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of next generation sequencing technologies for transcriptome assembly and utility for RNA-Seq in a non-model bird.
    Finseth FR; Harrison RG
    PLoS One; 2014; 9(10):e108550. PubMed ID: 25279728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GeneScissors: a comprehensive approach to detecting and correcting spurious transcriptome inference owing to RNA-seq reads misalignment.
    Zhang Z; Huang S; Wang J; Zhang X; Pardo Manuel de Villena F; McMillan L; Wang W
    Bioinformatics; 2013 Jul; 29(13):i291-9. PubMed ID: 23812996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.