These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34786744)

  • 41. Approximate confidence intervals for the likelihood ratios of a binary diagnostic test in the presence of partial disease verification.
    Montero-Alonso MA; Roldán-Nofuentes JA
    J Biopharm Stat; 2019; 29(1):56-81. PubMed ID: 29584541
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bayesian confidence intervals for the difference between variances of delta-lognormal distributions.
    Maneerat P; Niwitpong SA; Niwitpong S
    Biom J; 2020 Nov; 62(7):1769-1790. PubMed ID: 32567112
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases.
    Lloyd-Smith JO
    PLoS One; 2007 Feb; 2(2):e180. PubMed ID: 17299582
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Confidence intervals of the difference between areas under two ROC curves in matched-pair experiments.
    Zhang Y; Tang N
    Stat Med; 2020 Sep; 39(20):2621-2638. PubMed ID: 32390284
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Confidence intervals for weighted sums of Poisson parameters.
    Dobson AJ; Kuulasmaa K; Eberle E; Scherer J
    Stat Med; 1991 Mar; 10(3):457-62. PubMed ID: 2028128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved confidence intervals when the sample is counted an integer times longer than the blank.
    Potter WE; Strzelczyk JJ
    Health Phys; 2011 May; 100 Suppl 2():S67-70. PubMed ID: 21451310
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Higher-moment approaches to approximate interval estimation for a certain intraclass correlation coefficient.
    Zou KH; McDermott MP
    Stat Med; 1999 Aug; 18(15):2051-61. PubMed ID: 10440886
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Confidence intervals for rainfall dispersions using the ratio of two coefficients of variation of lognormal distributions with excess zeros.
    Yosboonruang N; Niwitpong SA; Niwitpong S
    PLoS One; 2022; 17(3):e0265875. PubMed ID: 35320313
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Statistical properties of methods based on the Q-statistic for constructing a confidence interval for the between-study variance in meta-analysis.
    van Aert RCM; van Assen MALM; Viechtbauer W
    Res Synth Methods; 2019 Jun; 10(2):225-239. PubMed ID: 30589219
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new distribution-free approach to constructing the confidence region for multiple parameters.
    Hu Z; Yang RC
    PLoS One; 2013; 8(12):e81179. PubMed ID: 24324674
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of four gamma-based methods for calculating confidence intervals for age-adjusted mortality rates when data are sparse.
    Talih M; Anderson RN; Parker JD
    Popul Health Metr; 2022 May; 20(1):13. PubMed ID: 35525928
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Weighted profile likelihood-based confidence interval for the difference between two proportions with paired binomial data.
    Pradhan V; Saha KK; Banerjee T; Evans JC
    Stat Med; 2014 Jul; 33(17):2984-97. PubMed ID: 24599527
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Confidence intervals for the common odds ratio based on the inverse sinh transformation.
    Ma J; Wang S
    J Biopharm Stat; 2021 Sep; 31(5):583-602. PubMed ID: 34191672
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel confidence interval for a single proportion in the presence of clustered binary outcome data.
    Short MI; Cabral HJ; Weinberg JM; LaValley MP; Massaro JM
    Stat Methods Med Res; 2020 Jan; 29(1):111-121. PubMed ID: 30672389
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Confidence intervals for the difference between independent binomial proportions: comparison using a graphical approach and moving averages.
    Laud PJ; Dane A
    Pharm Stat; 2014; 13(5):294-308. PubMed ID: 25163425
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Maximum likelihood abundance estimation from capture-recapture data when covariates are missing at random.
    Liu Y; Liu Y; Li P; Zhu L
    Biometrics; 2021 Sep; 77(3):1050-1060. PubMed ID: 32672861
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Comparison of Some Approximate Confidence Intervals for a Single Proportion for Clustered Binary Outcome Data.
    Saha KK; Miller D; Wang S
    Int J Biostat; 2016 Nov; 12(2):. PubMed ID: 26569139
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Confidence intervals for the binomial parameter: some new considerations.
    Reiczigel J
    Stat Med; 2003 Feb; 22(4):611-21. PubMed ID: 12590417
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Empirical likelihood-based confidence intervals for mean medical cost with censored data.
    Jeyarajah J; Qin G
    Stat Med; 2017 Nov; 36(25):4061-4070. PubMed ID: 28744877
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Confidence intervals for weighted proportions.
    Waller JL; Addy CL; Jackson KL; Garrison CZ
    Stat Med; 1994 May; 13(10):1071-82. PubMed ID: 8073202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.