These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34786764)

  • 1. Fundamentals of turbulent flow spectrum imaging.
    Dillinger H; McGrath C; Guenthner C; Kozerke S
    Magn Reson Med; 2022 Mar; 87(3):1231-1249. PubMed ID: 34786764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Reynolds stress components and turbulent pressure loss using 4D flow MRI with extended motion encoding.
    Haraldsson H; Kefayati S; Ahn S; Dyverfeldt P; Lantz J; Karlsson M; Laub G; Ebbers T; Saloner D
    Magn Reson Med; 2018 Apr; 79(4):1962-1971. PubMed ID: 28745409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of turbulence and velocity in stenotic flow using spiral three-dimensional phase-contrast MRI.
    Petersson S; Dyverfeldt P; Sigfridsson A; Lantz J; Carlhäll CJ; Ebbers T
    Magn Reson Med; 2016 Mar; 75(3):1249-55. PubMed ID: 25846511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of turbulent kinetic energy using 4D phase-contrast MRI: Effect of scan parameters and target vessel size.
    Ha H; Hwang D; Kim GB; Kweon J; Lee SJ; Baek J; Kim YH; Kim N; Yang DH
    Magn Reson Imaging; 2016 Jul; 34(6):715-723. PubMed ID: 26968139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Four-dimensional flow MRI for evaluation of post-stenotic turbulent flow in a phantom: comparison with flowmeter and computational fluid dynamics.
    Kweon J; Yang DH; Kim GB; Kim N; Paek M; Stalder AF; Greiser A; Kim YH
    Eur Radiol; 2016 Oct; 26(10):3588-97. PubMed ID: 26747263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the accuracy of viscous and turbulent loss quantification in stenotic aortic flow using phase-contrast MRI.
    Binter C; Gülan U; Holzner M; Kozerke S
    Magn Reson Med; 2016 Jul; 76(1):191-6. PubMed ID: 26258402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.
    Ziegler M; Lantz J; Ebbers T; Dyverfeldt P
    Magn Reson Med; 2017 Jun; 77(6):2310-2319. PubMed ID: 27350049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible detection of turbulent blood flow using multiparametric encoding gradients in MRI.
    Kwiat D; Einav S; Elad D
    Med Phys; 1991; 18(2):316-23. PubMed ID: 2046622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI.
    Dyverfeldt P; Sigfridsson A; Kvitting JP; Ebbers T
    Magn Reson Med; 2006 Oct; 56(4):850-8. PubMed ID: 16958074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of phase contrast MRI of turbulent flow.
    Petersson S; Dyverfeldt P; Gårdhagen R; Karlsson M; Ebbers T
    Magn Reson Med; 2010 Oct; 64(4):1039-46. PubMed ID: 20574963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro experiments on ICOSA6 4D flow MRI measurement for the quantification of velocity and turbulence parameters.
    Ha H; Park KJ; Dyverfeldt P; Ebbers T; Yang DH
    Magn Reson Imaging; 2020 Oct; 72():49-60. PubMed ID: 32619720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of turbulent viscous stress using ICOSA 4D Flow MRI for prediction of hemodynamic blood damage.
    Ha H; Lantz J; Haraldsson H; Casas B; Ziegler M; Karlsson M; Saloner D; Dyverfeldt P; Ebbers T
    Sci Rep; 2016 Dec; 6():39773. PubMed ID: 28004789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping of turbulent intensity by magnetic resonance imaging.
    Gatenby JC; Gore JC
    J Magn Reson B; 1994 Jun; 104(2):119-26. PubMed ID: 8049864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turbulent fluctuation velocity: the most significant determinant of signal loss in stenotic vessels.
    Oshinski JN; Ku DN; Pettigrew RI
    Magn Reson Med; 1995 Feb; 33(2):193-9. PubMed ID: 7707909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear-scaling-based approach for irreversible energy loss estimation in stenotic aortic flow - An in vitro study.
    Gülan U; Binter C; Kozerke S; Holzner M
    J Biomech; 2017 May; 56():89-96. PubMed ID: 28342532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminar-to-turbulence and relaminarization zones detection by simulation of low Reynolds number turbulent blood flow in large stenosed arteries.
    Tabe R; Ghalichi F; Hossainpour S; Ghasemzadeh K
    Biomed Mater Eng; 2016 Aug; 27(2-3):119-29. PubMed ID: 27567769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive estimation of relative pressure in turbulent flow using virtual work-energy.
    Marlevi D; Ha H; Dillon-Murphy D; Fernandes JF; Fovargue D; Colarieti-Tosti M; Larsson M; Lamata P; Figueroa CA; Ebbers T; Nordsletten DA
    Med Image Anal; 2020 Feb; 60():101627. PubMed ID: 31865280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of time-frequency representation techniques to measure blood flow turbulence with pulsed-wave Doppler ultrasound.
    Cloutier G; Chen D; Durand LG
    Ultrasound Med Biol; 2001 Apr; 27(4):535-50. PubMed ID: 11368865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics.
    Jung EC; Lee GH; Shim EB; Ha H
    Sci Rep; 2023 Sep; 13(1):14638. PubMed ID: 37670027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of turbulence-induced asymmetric propagators on the accuracy of phase-contrast velocimetry.
    Al-Mubarak HFI; Vallatos A; Holmes WM
    J Magn Reson; 2021 Apr; 325():106929. PubMed ID: 33713991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.