BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34786859)

  • 1. Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics.
    Boloix A; Feiner-Gracia N; Köber M; Repetto J; Pascarella R; Soriano A; Masanas M; Segovia N; Vargas-Nadal G; Merlo-Mas J; Danino D; Abutbul-Ionita I; Foradada L; Roma J; Córdoba A; Sala S; de Toledo JS; Gallego S; Veciana J; Albertazzi L; Segura MF; Ventosa N
    Small; 2022 Jan; 18(3):e2101959. PubMed ID: 34786859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid nanocarriers for microRNA delivery.
    Scheideler M; Vidakovic I; Prassl R
    Chem Phys Lipids; 2020 Jan; 226():104837. PubMed ID: 31689410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical characterization of pH-responsive and fusogenic self-assembled non-phospholipid vesicles for a potential multiple targeting therapy.
    Di Francesco M; Celia C; Primavera R; D'Avanzo N; Locatelli M; Fresta M; Cilurzo F; Ventura CA; Paolino D; Di Marzio L
    Int J Pharm; 2017 Aug; 528(1-2):18-32. PubMed ID: 28559215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA delivery through nanoparticles.
    Lee SWL; Paoletti C; Campisi M; Osaki T; Adriani G; Kamm RD; Mattu C; Chiono V
    J Control Release; 2019 Nov; 313():80-95. PubMed ID: 31622695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel approaches in cancer treatment: preclinical and clinical development of small non-coding RNA therapeutics.
    Cuciniello R; Filosa S; Crispi S
    J Exp Clin Cancer Res; 2021 Dec; 40(1):383. PubMed ID: 34863235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delivery of MicroRNAs by Chitosan Nanoparticles to Functionally Alter Macrophage Cholesterol Efflux in Vitro and in Vivo.
    Nguyen MA; Wyatt H; Susser L; Geoffrion M; Rasheed A; Duchez AC; Cottee ML; Afolayan E; Farah E; Kahiel Z; Côté M; Gadde S; Rayner KJ
    ACS Nano; 2019 Jun; 13(6):6491-6505. PubMed ID: 31125197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics.
    Gentile E; Oba T; Lin J; Shao R; Meng F; Cao X; Lin HY; Mourad M; Pataer A; Baladandayuthapani V; Cai D; Roth JA; Ji L
    Oncotarget; 2017 Jul; 8(29):48222-48239. PubMed ID: 28637023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models.
    Moro M; Di Paolo D; Milione M; Centonze G; Bornaghi V; Borzi C; Gandellini P; Perri P; Pastorino U; Ponzoni M; Sozzi G; Fortunato O
    J Control Release; 2019 Aug; 308():44-56. PubMed ID: 31299263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivery of therapeutic miRNA using polymer-based formulation.
    Ban E; Kwon TH; Kim A
    Drug Deliv Transl Res; 2019 Dec; 9(6):1043-1056. PubMed ID: 31049843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivery of small interfering RNAs by nanovesicles for cancer therapy.
    Pengnam S; Plianwong S; Yingyongnarongkul BE; Patrojanasophon P; Opanasopit P
    Drug Metab Pharmacokinet; 2022 Feb; 42():100425. PubMed ID: 34954489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical Biomolecular Insights into Buffalo Milk-Derived Nanovesicles.
    Baddela VS; Nayan V; Rani P; Onteru SK; Singh D
    Appl Biochem Biotechnol; 2016 Feb; 178(3):544-57. PubMed ID: 26490380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA replacement therapy in cancer.
    Mollaei H; Safaralizadeh R; Rostami Z
    J Cell Physiol; 2019 Aug; 234(8):12369-12384. PubMed ID: 30605237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile RNA interference nanoplatform for systemic delivery of RNAs.
    Choi KY; Silvestre OF; Huang X; Min KH; Howard GP; Hida N; Jin AJ; Carvajal N; Lee SW; Hong JI; Chen X
    ACS Nano; 2014 May; 8(5):4559-70. PubMed ID: 24779637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in microRNA delivery.
    Zhang Y; Wang Z; Gemeinhart RA
    J Control Release; 2013 Dec; 172(3):962-74. PubMed ID: 24075926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan-modified lipid nanovesicles for efficient systemic delivery of l-asparaginase.
    Wan S; He D; Yuan Y; Yan Z; Zhang X; Zhang J
    Colloids Surf B Biointerfaces; 2016 Jul; 143():278-284. PubMed ID: 27022867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale generation of cell-derived nanovesicles.
    Jo W; Kim J; Yoon J; Jeong D; Cho S; Jeong H; Yoon YJ; Kim SC; Gho YS; Park J
    Nanoscale; 2014 Oct; 6(20):12056-64. PubMed ID: 25189198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics.
    Bai Z; Wei J; Yu C; Han X; Qin X; Zhang C; Liao W; Li L; Huang W
    J Mater Chem B; 2019 Feb; 7(8):1209-1225. PubMed ID: 32255160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-mediated delivery of therapeutic genes: focus on miRNA therapeutics.
    Muthiah M; Park IK; Cho CS
    Expert Opin Drug Deliv; 2013 Sep; 10(9):1259-73. PubMed ID: 23826971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MKC-Quatsomes: a stable nanovesicle platform for bio-imaging and drug-delivery applications.
    Vargas-Nadal G; Muñoz-Úbeda M; Álamo P; Mitjans M; Céspedes V; Köber M; González-Mira E; Ferrer-Tasies L; Vinardell MP; Mangues R; Veciana J; Ventosa N
    Nanomedicine; 2020 Feb; 24():102136. PubMed ID: 31843659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-targeted therapeutics for lung cancer treatment.
    Xue J; Yang J; Luo M; Cho WC; Liu X
    Expert Opin Drug Discov; 2017 Feb; 12(2):141-157. PubMed ID: 27866431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.