BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34787128)

  • 1. Rechargeable aqueous zinc-bromine batteries: an overview and future perspectives.
    Yin Y; Yuan Z; Li X
    Phys Chem Chem Phys; 2021 Dec; 23(46):26070-26084. PubMed ID: 34787128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Covalent Organic Frameworks Toward Advanced Zinc-Based Batteries.
    Zhang Q; Zhi P; Zhang J; Duan S; Yao X; Liu S; Sun Z; Jun SC; Zhao N; Dai L; Wang L; Wu X; He Z; Zhang Q
    Adv Mater; 2024 Jun; 36(24):e2313152. PubMed ID: 38491731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rechargeable Aqueous Zinc-Halogen Batteries: Fundamental Mechanisms, Research Issues, and Future Perspectives.
    She L; Cheng H; Yuan Z; Shen Z; Wu Q; Zhong W; Zhang S; Zhang B; Liu C; Zhang M; Pan H; Lu Y
    Adv Sci (Weinh); 2024 Feb; 11(8):e2305061. PubMed ID: 37939285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc-Bromine Batteries: Challenges, Prospective Solutions, and Future.
    Mahmood A; Zheng Z; Chen Y
    Adv Sci (Weinh); 2024 Jan; 11(3):e2305561. PubMed ID: 37988707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous Rechargeable Zn-ion Batteries: Strategies for Improving the Energy Storage Performance.
    Mallick S; Raj CR
    ChemSusChem; 2021 May; 14(9):1987-2022. PubMed ID: 33725419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives.
    Cui J; Guo Z; Yi J; Liu X; Wu K; Liang P; Li Q; Liu Y; Wang Y; Xia Y; Zhang J
    ChemSusChem; 2020 May; 13(9):2160-2185. PubMed ID: 32043825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries.
    Wang X; Zhang Z; Xi B; Chen W; Jia Y; Feng J; Xiong S
    ACS Nano; 2021 Jun; 15(6):9244-9272. PubMed ID: 34081440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Overview and Future Perspectives of Rechargeable Zinc Batteries.
    Shi Y; Chen Y; Shi L; Wang K; Wang B; Li L; Ma Y; Li Y; Sun Z; Ali W; Ding S
    Small; 2020 Jun; 16(23):e2000730. PubMed ID: 32406195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress on Zinc-Ion Rechargeable Batteries.
    Xu W; Wang Y
    Nanomicro Lett; 2019 Oct; 11(1):90. PubMed ID: 34138036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and defect engineering of cobaltosic oxide nanoarchitectures as an ultrahigh energy density and super durable cathode for Zn-based batteries.
    Teng C; Yang F; Sun M; Yin K; Huang Q; Fu G; Zhang C; Lu X; Jiang J
    Chem Sci; 2019 Aug; 10(32):7600-7609. PubMed ID: 31588311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achievement of Efficient and Stable Nonflow Zinc-Bromine Batteries Assisted by Rational Decoration upon the Two Electrodes.
    Liu C; Dong W; Zhou H; Li J; Du H; Ji X; Cheng S
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38684068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of recent developments in rechargeable lithium-sulfur batteries.
    Kang W; Deng N; Ju J; Li Q; Wu D; Ma X; Li L; Naebe M; Cheng B
    Nanoscale; 2016 Sep; 8(37):16541-16588. PubMed ID: 27714087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials chemistry for rechargeable zinc-ion batteries.
    Zhang N; Chen X; Yu M; Niu Z; Cheng F; Chen J
    Chem Soc Rev; 2020 Jul; 49(13):4203-4219. PubMed ID: 32478772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode.
    Xia C; Guo J; Li P; Zhang X; Alshareef HN
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):3943-3948. PubMed ID: 29432667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges and Strategies toward Cathode Materials for Rechargeable Potassium-Ion Batteries.
    Liu S; Kang L; Jun SC
    Adv Mater; 2021 Nov; 33(47):e2004689. PubMed ID: 33448099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Aqueous Zinc-Ion Battery Based on Layered H
    He P; Quan Y; Xu X; Yan M; Yang W; An Q; He L; Mai L
    Small; 2017 Dec; 13(47):. PubMed ID: 29152849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Design Strategies for Rechargeable Magnesium-Based Batteries.
    Zhang J; Chang Z; Zhang Z; Du A; Dong S; Li Z; Li G; Cui G
    ACS Nano; 2021 Oct; 15(10):15594-15624. PubMed ID: 34633797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Zinc-Dual-Halogen Battery with a Molten Hydrate Electrolyte.
    Liu H; Chen CY; Yang H; Wang Y; Zou L; Wei YS; Jiang J; Guo J; Shi W; Xu Q; Cheng P
    Adv Mater; 2020 Nov; 32(46):e2004553. PubMed ID: 33048428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.