These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

636 related articles for article (PubMed ID: 34787398)

  • 1. Molecular Quantum Dynamics: A Quantum Computing Perspective.
    Ollitrault PJ; Miessen A; Tavernelli I
    Acc Chem Res; 2021 Dec; 54(23):4229-4238. PubMed ID: 34787398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Hopping Dynamics on Vibronic Coupling Models.
    Zobel JP; Heindl M; Plasser F; Mai S; González L
    Acc Chem Res; 2021 Oct; 54(20):3760-3771. PubMed ID: 34570472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Molecular Photochemistry Using Machine-Learning-Enhanced Quantum Dynamics Simulations.
    Richings GW; Habershon S
    Acc Chem Res; 2022 Jan; 55(2):209-220. PubMed ID: 34982533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonadiabatic Molecular Quantum Dynamics with Quantum Computers.
    Ollitrault PJ; Mazzola G; Tavernelli I
    Phys Rev Lett; 2020 Dec; 125(26):260511. PubMed ID: 33449795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed-quantum-classical or fully-quantized dynamics? A unified code to compare methods.
    Coonjobeeharry J; Spinlove KE; Sanz Sanz C; Sapunar M; Došlić N; Worth GA
    Philos Trans A Math Phys Eng Sci; 2022 May; 380(2223):20200386. PubMed ID: 35341308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-adiabatic quantum dynamics without potential energy surfaces based on second-quantized electrons: Application within the framework of the MCTDH method.
    Sasmal S; Vendrell O
    J Chem Phys; 2020 Oct; 153(15):154110. PubMed ID: 33092359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variational Quantum Simulation of Chemical Dynamics with Quantum Computers.
    Lee CK; Hsieh CY; Zhang S; Shi L
    J Chem Theory Comput; 2022 Apr; 18(4):2105-2113. PubMed ID: 35293753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics.
    Cotton SJ; Liang R; Miller WH
    J Chem Phys; 2017 Aug; 147(6):064112. PubMed ID: 28810754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully Quantum Description of the Zundel Ion: Combining Variational Quantum Monte Carlo with Path Integral Langevin Dynamics.
    Mouhat F; Sorella S; Vuilleumier R; Saitta AM; Casula M
    J Chem Theory Comput; 2017 Jun; 13(6):2400-2417. PubMed ID: 28441484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping Quantum Chemical Dynamics Problems to Spin-Lattice Simulators.
    Saha D; Iyengar SS; Richerme P; Smith JM; Sabry A
    J Chem Theory Comput; 2021 Nov; 17(11):6713-6732. PubMed ID: 34694820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digitized adiabatic quantum computing with a superconducting circuit.
    Barends R; Shabani A; Lamata L; Kelly J; Mezzacapo A; Las Heras U; Babbush R; Fowler AG; Campbell B; Chen Y; Chen Z; Chiaro B; Dunsworth A; Jeffrey E; Lucero E; Megrant A; Mutus JY; Neeley M; Neill C; O'Malley PJ; Quintana C; Roushan P; Sank D; Vainsencher A; Wenner J; White TC; Solano E; Neven H; Martinis JM
    Nature; 2016 Jun; 534(7606):222-6. PubMed ID: 27279216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Born-Oppenheimer Dynamics, Electronic Friction, and the Inclusion of Electron-Electron Interactions.
    Dou W; Miao G; Subotnik JE
    Phys Rev Lett; 2017 Jul; 119(4):046001. PubMed ID: 29341745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR-MCTDH[
    Madsen NK; Hansen MB; Worth GA; Christiansen O
    J Chem Theory Comput; 2020 Jul; 16(7):4087-4097. PubMed ID: 32544331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab Initio Nonadiabatic Quantum Molecular Dynamics.
    Curchod BFE; Martínez TJ
    Chem Rev; 2018 Apr; 118(7):3305-3336. PubMed ID: 29465231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-temperature electronic simulations without the Born-Oppenheimer constraint.
    Mazzola G; Zen A; Sorella S
    J Chem Phys; 2012 Oct; 137(13):134112. PubMed ID: 23039590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating direct quantum dynamics using graphical processing units.
    Penfold TJ
    Phys Chem Chem Phys; 2017 Aug; 19(30):19601-19608. PubMed ID: 28393937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic and variational truncation of the configuration space in the multiconfiguration time-dependent Hartree method: The MCTDH[n] hierarchy.
    Madsen NK; Hansen MB; Worth GA; Christiansen O
    J Chem Phys; 2020 Feb; 152(8):084101. PubMed ID: 32113340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Dynamics with Nuclear-Electronic Orbital Density Functional Theory.
    Tao Z; Yu Q; Roy S; Hammes-Schiffer S
    Acc Chem Res; 2021 Nov; 54(22):4131-4141. PubMed ID: 34726895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic non-adiabatic states: towards a density functional theory beyond the Born-Oppenheimer approximation.
    Gidopoulos NI; Gross EK
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20130059. PubMed ID: 24516183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exponential parameterization of wave functions for quantum dynamics: Time-dependent Hartree in second quantization.
    Madsen NK; Hansen MB; Zoccante A; Monrad K; Hansen MB; Christiansen O
    J Chem Phys; 2018 Oct; 149(13):134110. PubMed ID: 30292211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.