These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34787684)

  • 1. Eye-hand coordination: memory-guided grasping during obstacle avoidance.
    Abbas HH; Langridge RW; Marotta JJ
    Exp Brain Res; 2022 Feb; 240(2):453-466. PubMed ID: 34787684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaze-grasp coordination in obstacle avoidance: differences between binocular and monocular viewing.
    Grant S
    Exp Brain Res; 2015 Dec; 233(12):3489-505. PubMed ID: 26298046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaze strategies during visually-guided versus memory-guided grasping.
    Prime SL; Marotta JJ
    Exp Brain Res; 2013 Mar; 225(2):291-305. PubMed ID: 23239197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.
    Tang R; Whitwell RL; Goodale MA
    Cognition; 2015 May; 138():49-63. PubMed ID: 25704582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2010 Mar; 201(3):509-25. PubMed ID: 19902195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of obstacles on grasp planning.
    Garzorz IT; Knorr AG; Gilster R; Deubel H
    Exp Brain Res; 2018 Oct; 236(10):2639-2648. PubMed ID: 29974146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action-perception theory.
    Kuntz JR; Karl JM; Doan JB; Whishaw IQ
    Exp Brain Res; 2018 Apr; 236(4):1091-1103. PubMed ID: 29441469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parkinson's disease patients show impaired corrective grasp control and eye-hand coupling when reaching to grasp virtual objects.
    Lukos JR; Snider J; Hernandez ME; Tunik E; Hillyard S; Poizner H
    Neuroscience; 2013 Dec; 254():205-21. PubMed ID: 24056196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Gaze Position on Reaching Movements in an Obstacle Avoidance Task.
    Ross AI; Schenk T; Hesse C
    PLoS One; 2015; 10(12):e0144193. PubMed ID: 26636966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of delay on the kinematics of grasping.
    Hu Y; Eagleson R; Goodale MA
    Exp Brain Res; 1999 May; 126(1):109-16. PubMed ID: 10333011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reach/Grasp Times with Lateral Reach Obstructions.
    Hoffmann ER; Chan AHS; Lam CKY
    J Mot Behav; 2019; 51(4):351-361. PubMed ID: 30111261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reach and Grasp reconfigurations reveal that proprioception assists reaching and hapsis assists grasping in peripheral vision.
    Hall LA; Karl JM; Thomas BL; Whishaw IQ
    Exp Brain Res; 2014 Sep; 232(9):2807-19. PubMed ID: 24792500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of visual and haptic feedback on grasping movements.
    Bozzacchi C; Volcic R; Domini F
    J Neurophysiol; 2014 Dec; 112(12):3189-96. PubMed ID: 25231616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haptic grasping configurations in early infancy reveal different developmental profiles for visual guidance of the Reach versus the Grasp.
    Karl JM; Whishaw IQ
    Exp Brain Res; 2014 Oct; 232(10):3301-16. PubMed ID: 24969613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-line control of grasping actions: object-specific motor facilitation requires sustained visual input.
    Prabhu G; Lemon R; Haggard P
    J Neurosci; 2007 Nov; 27(46):12651-4. PubMed ID: 18003844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibrating grasp size and reach distance: interactions reveal integral organization of reaching-to-grasp movements.
    Coats R; Bingham GP; Mon-Williams M
    Exp Brain Res; 2008 Aug; 189(2):211-20. PubMed ID: 18493753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct Neural Components of Visually Guided Grasping during Planning and Execution.
    Klein LK; Maiello G; Stubbs K; Proklova D; Chen J; Paulun VC; Culham JC; Fleming RW
    J Neurosci; 2023 Dec; 43(49):8504-8514. PubMed ID: 37848285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grasping occluded targets: investigating the influence of target visibility, allocentric cue presence, and direction of motion on gaze and grasp accuracy.
    Langridge RW; Marotta JJ
    Exp Brain Res; 2017 Sep; 235(9):2705-2716. PubMed ID: 28597294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hand shaping using hapsis resembles visually guided hand shaping.
    Karl JM; Sacrey LA; Doan JB; Whishaw IQ
    Exp Brain Res; 2012 May; 219(1):59-74. PubMed ID: 22437961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Touch the table before the target: contact with an underlying surface may assist the development of precise visually controlled reach and grasp movements in human infants.
    Karl JM; Wilson AM; Bertoli ME; Shubear NS
    Exp Brain Res; 2018 Aug; 236(8):2185-2207. PubMed ID: 29797280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.