These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34787715)

  • 1. Magnetic resonance imaging-related programmable ventriculoperitoneal shunt valve setting changes occur often.
    Ucisik FE; Simonetta AB; Bonfante-Mejia EM
    Acta Neurochir (Wien); 2022 Feb; 164(2):495-498. PubMed ID: 34787715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable shunt valve interactions with osseointegrated hearing devices.
    J Neurosurg Pediatr; 2017 Apr; 19(4):384-390. PubMed ID: 28186475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between programmable shunt valves and magnetically controlled growing rods for scoliosis.
    Larrew T; Alshareef M; Murphy RF; Eskandari R; Kosnik Infinger L
    J Neurosurg Pediatr; 2020 Dec; 26(6):667-670. PubMed ID: 33007746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalence and indication for changing the primary valve opening pressure in ventriculoperitoneal shunts - A single center five years overview.
    Müggenburg L; Behmanesh B; Dinc N; Marquardt G; Seifert V; Quick-Weller J
    Clin Neurol Neurosurg; 2019 Nov; 186():105523. PubMed ID: 31525716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the risk of magnetic interaction between auditory implants and programmable ventriculoperitoneal shunts.
    Shrivastava M; Abdul-Hamid A; Zilani G; Qureishi A; Jeyaretna S; Mackeith S
    Cochlear Implants Int; 2023 Mar; 24(2):83-86. PubMed ID: 36647577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safety and function of programmable ventriculo-peritoneal shunt valves: An in vitro 7 Tesla magnetic resonance imaging study.
    Chen B; Dammann P; Jabbarli R; Sure U; Quick HH; Kraff O; Wrede KH
    PLoS One; 2023; 18(10):e0292666. PubMed ID: 37819939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early programmable valve malfunctions in pediatric hydrocephalus.
    Mangano FT; Menendez JA; Habrock T; Narayan P; Leonard JR; Park TS; Smyth MD
    J Neurosurg; 2005 Dec; 103(6 Suppl):501-7. PubMed ID: 16383248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of transcranial magnetic stimulation on four types of pressure-programmable valves.
    Lefranc M; Ko JY; Peltier J; Fichten A; Desenclos C; Macron JM; Toussaint P; Le Gars D; Petitjean M
    Acta Neurochir (Wien); 2010 Apr; 152(4):689-97. PubMed ID: 19957091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable shunts and headphones: Are they safe together?
    Spader HS; Ratanaprasatporn L; Morrison JF; Grossberg JA; Cosgrove GR
    J Neurosurg Pediatr; 2015 Oct; 16(4):402-5. PubMed ID: 26149436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves.
    Inoue T; Kuzu Y; Ogasawara K; Ogawa A
    J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prosepective Study to Evaluate Rate and Frequency of Perturbations of Implanted Programmable Hakim Codman Valve After 1.5-Tesla Magnetic Resonance Imaging.
    Capitanio JF; Venier A; Mazzeo LA; Barzaghi LR; Acerno S; Mortini P
    World Neurosurg; 2016 Apr; 88():297-299. PubMed ID: 26455768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman-Medos programmable shunt valve.
    Frim DM; Lathrop D
    Pediatr Neurosurg; 2000 Nov; 33(5):237-242. PubMed ID: 11155059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable CSF shunt valves: radiographic identification and interpretation.
    Lollis SS; Mamourian AC; Vaccaro TJ; Duhaime AC
    AJNR Am J Neuroradiol; 2010 Aug; 31(7):1343-6. PubMed ID: 20150313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of exposure from iPhone 12 on programmable ventriculoperitoneal shunts.
    Kumar A; Pervaiz A; Borg A; Abdul-Hamid A; Jeyaretna S; MacKeith S; Qureishi A
    Br J Neurosurg; 2022 Jun; 36(3):415-419. PubMed ID: 35062838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From fixed-pressure paediGAV to programmable proGAV/proSA serial valves for pediatric hydrocephalus within the 1st year of life: a technical single-center analysis.
    Teping F; Huelser M; Sippl C; Zemlin M; Oertel J
    J Neurosurg Pediatr; 2023 Jun; 31(6):536-544. PubMed ID: 36933264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable valve shunts: are they really better?
    Kataria R; Kumar V; Mehta VS
    Turk Neurosurg; 2012; 22(2):237-8. PubMed ID: 22437300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic field interactions in adjustable hydrocephalus shunts.
    Lavinio A; Harding S; Van Der Boogaard F; Czosnyka M; Smielewski P; Richards HK; Pickard JD; Czosnyka ZH
    J Neurosurg Pediatr; 2008 Sep; 2(3):222-8. PubMed ID: 18759607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A randomized, controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus. Hakim-Medos Investigator Group.
    Pollack IF; Albright AL; Adelson PD
    Neurosurgery; 1999 Dec; 45(6):1399-408; discussion 1408-11. PubMed ID: 10598708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shunt Devices for the Treatment of Adult Hydrocephalus: Recent Progress and Characteristics.
    Miyake H
    Neurol Med Chir (Tokyo); 2016 May; 56(5):274-83. PubMed ID: 27041631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve.
    Ortler M; Kostron H; Felber S
    Neurosurgery; 1997 May; 40(5):1050-7; discussion 1057-8. PubMed ID: 9149264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.