BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34787715)

  • 1. Magnetic resonance imaging-related programmable ventriculoperitoneal shunt valve setting changes occur often.
    Ucisik FE; Simonetta AB; Bonfante-Mejia EM
    Acta Neurochir (Wien); 2022 Feb; 164(2):495-498. PubMed ID: 34787715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable shunt valve interactions with osseointegrated hearing devices.
    J Neurosurg Pediatr; 2017 Apr; 19(4):384-390. PubMed ID: 28186475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between programmable shunt valves and magnetically controlled growing rods for scoliosis.
    Larrew T; Alshareef M; Murphy RF; Eskandari R; Kosnik Infinger L
    J Neurosurg Pediatr; 2020 Oct; 26(6):667-670. PubMed ID: 33007746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalence and indication for changing the primary valve opening pressure in ventriculoperitoneal shunts - A single center five years overview.
    Müggenburg L; Behmanesh B; Dinc N; Marquardt G; Seifert V; Quick-Weller J
    Clin Neurol Neurosurg; 2019 Nov; 186():105523. PubMed ID: 31525716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the risk of magnetic interaction between auditory implants and programmable ventriculoperitoneal shunts.
    Shrivastava M; Abdul-Hamid A; Zilani G; Qureishi A; Jeyaretna S; Mackeith S
    Cochlear Implants Int; 2023 Mar; 24(2):83-86. PubMed ID: 36647577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safety and function of programmable ventriculo-peritoneal shunt valves: An in vitro 7 Tesla magnetic resonance imaging study.
    Chen B; Dammann P; Jabbarli R; Sure U; Quick HH; Kraff O; Wrede KH
    PLoS One; 2023; 18(10):e0292666. PubMed ID: 37819939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early programmable valve malfunctions in pediatric hydrocephalus.
    Mangano FT; Menendez JA; Habrock T; Narayan P; Leonard JR; Park TS; Smyth MD
    J Neurosurg; 2005 Dec; 103(6 Suppl):501-7. PubMed ID: 16383248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of transcranial magnetic stimulation on four types of pressure-programmable valves.
    Lefranc M; Ko JY; Peltier J; Fichten A; Desenclos C; Macron JM; Toussaint P; Le Gars D; Petitjean M
    Acta Neurochir (Wien); 2010 Apr; 152(4):689-97. PubMed ID: 19957091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable shunts and headphones: Are they safe together?
    Spader HS; Ratanaprasatporn L; Morrison JF; Grossberg JA; Cosgrove GR
    J Neurosurg Pediatr; 2015 Oct; 16(4):402-5. PubMed ID: 26149436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves.
    Inoue T; Kuzu Y; Ogasawara K; Ogawa A
    J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prosepective Study to Evaluate Rate and Frequency of Perturbations of Implanted Programmable Hakim Codman Valve After 1.5-Tesla Magnetic Resonance Imaging.
    Capitanio JF; Venier A; Mazzeo LA; Barzaghi LR; Acerno S; Mortini P
    World Neurosurg; 2016 Apr; 88():297-299. PubMed ID: 26455768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman-Medos programmable shunt valve.
    Frim DM; Lathrop D
    Pediatr Neurosurg; 2000 Nov; 33(5):237-242. PubMed ID: 11155059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable CSF shunt valves: radiographic identification and interpretation.
    Lollis SS; Mamourian AC; Vaccaro TJ; Duhaime AC
    AJNR Am J Neuroradiol; 2010 Aug; 31(7):1343-6. PubMed ID: 20150313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of exposure from iPhone 12 on programmable ventriculoperitoneal shunts.
    Kumar A; Pervaiz A; Borg A; Abdul-Hamid A; Jeyaretna S; MacKeith S; Qureishi A
    Br J Neurosurg; 2022 Jun; 36(3):415-419. PubMed ID: 35062838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From fixed-pressure paediGAV to programmable proGAV/proSA serial valves for pediatric hydrocephalus within the 1st year of life: a technical single-center analysis.
    Teping F; Huelser M; Sippl C; Zemlin M; Oertel J
    J Neurosurg Pediatr; 2023 Jun; 31(6):536-544. PubMed ID: 36933264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable valve shunts: are they really better?
    Kataria R; Kumar V; Mehta VS
    Turk Neurosurg; 2012; 22(2):237-8. PubMed ID: 22437300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic field interactions in adjustable hydrocephalus shunts.
    Lavinio A; Harding S; Van Der Boogaard F; Czosnyka M; Smielewski P; Richards HK; Pickard JD; Czosnyka ZH
    J Neurosurg Pediatr; 2008 Sep; 2(3):222-8. PubMed ID: 18759607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A randomized, controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus. Hakim-Medos Investigator Group.
    Pollack IF; Albright AL; Adelson PD
    Neurosurgery; 1999 Dec; 45(6):1399-408; discussion 1408-11. PubMed ID: 10598708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shunt Devices for the Treatment of Adult Hydrocephalus: Recent Progress and Characteristics.
    Miyake H
    Neurol Med Chir (Tokyo); 2016 May; 56(5):274-83. PubMed ID: 27041631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve.
    Ortler M; Kostron H; Felber S
    Neurosurgery; 1997 May; 40(5):1050-7; discussion 1057-8. PubMed ID: 9149264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.