BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34787715)

  • 21. The programmable adult Codman Hakim valve is useful even in very small children with hydrocephalus. A 7-year retrospective study with special focus on cost/benefit analysis.
    Arnell K; Eriksson E; Olsen L
    Eur J Pediatr Surg; 2006 Feb; 16(1):1-7. PubMed ID: 16544218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A clinical survey of hydrocephalus and current treatment for hydrocephalus in Japan: analysis by nationwide questionnaire.
    Miyake H; Ohta T; Kajimoto Y; Ogawa D
    Childs Nerv Syst; 1999 Aug; 15(8):363-8. PubMed ID: 10447603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adjustable vs set-pressure valves decrease the risk of proximal shunt obstruction in the treatment of pediatric hydrocephalus.
    McGirt MJ; Buck DW; Sciubba D; Woodworth GF; Carson B; Weingart J; Jallo G
    Childs Nerv Syst; 2007 Mar; 23(3):289-95. PubMed ID: 17106749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Does Valve Design Affect the Tensile Strength of Ventriculoperitoneal Shunts?
    Patel P; Arshad H; Jefferys K; Gernsback J
    Oper Neurosurg (Hagerstown); 2024 Jul; ():. PubMed ID: 38967442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clinical evaluation of shunt implantations using Sophy programmable pressure valves: comparison with Codman-Hakim programmable valves.
    Katano H; Karasawa K; Sugiyama N; Yamashita N; Ohkura A; Kamiya K
    J Clin Neurosci; 2003 Sep; 10(5):557-61. PubMed ID: 12948459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of programmable versus nonprogrammable shunts in the management of hydrocephalus secondary to aneurysmal subarachnoid hemorrhage: a retrospective study with cost-benefit analysis.
    Lee L; King NK; Kumar D; Ng YP; Rao J; Ng H; Lee KK; Wang E; Ng I
    J Neurosurg; 2014 Oct; 121(4):899-903. PubMed ID: 24745705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of magnetic fields from home-use magnetic induction therapy apparatuses on adjustable cerebrospinal fluid shunt valves].
    Nakashima K; Oishi A; Itokawa H; Fujimoto M
    No Shinkei Geka; 2010 Aug; 38(8):725-9. PubMed ID: 20697146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrodynamic properties of hydrocephalus shunts.
    Czosnyka Z; Czosnyka M; Richards H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():334-9. PubMed ID: 9779223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetically programmable shunt valve: MRI at 3-Tesla.
    Shellock FG; Wilson SF; Mauge CP
    Magn Reson Imaging; 2007 Sep; 25(7):1116-21. PubMed ID: 17707175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parent/guardian knowledge regarding implanted shunt type, setting, and symptoms of malfunction/infection.
    Ackerman LL; Fulkerson DH; Jea A; Smith JL
    J Neurosurg Pediatr; 2018 Apr; 21(4):359-366. PubMed ID: 29328006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An In Vitro Study of Magnetic Field Interference with an Electronic Shunt Programmer.
    Pajer HB; Carlson AP; Botros JA; Spader HS
    World Neurosurg; 2022 Oct; 166():e568-e571. PubMed ID: 35868507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of ventriculoperitoneal shunt valve design in the treatment of pediatric hydrocephalus--a single center study of valve performance in the clinical setting.
    Beez T; Sarikaya-Seiwert S; Bellstädt L; Mühmer M; Steiger HJ
    Childs Nerv Syst; 2014 Feb; 30(2):293-7. PubMed ID: 23900632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Programmable valve breakage in shunt systems of children with posthemorrhagic hydrocephalus after minor head trauma-a case series.
    Schwarm FP; Nagl J; Bender M; Stein M; Giese K; Hahn A; Uhl E; Kolodziej MA
    Childs Nerv Syst; 2020 Sep; 36(9):2027-2031. PubMed ID: 32078023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Management of idiopathic intracranial hypertension with a programmable lumboperitoneal shunt: Early experience.
    Alkherayf F; Abou Al-Shaar H; Awad M
    Clin Neurol Neurosurg; 2015 Sep; 136():5-9. PubMed ID: 26056804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Withdrawal of shunt systems--clinical use of the programmable shunt system and its effect on hydrocephalus in children.
    Takahashi Y
    Childs Nerv Syst; 2001 Aug; 17(8):472-7. PubMed ID: 11508536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Programmable (proSA®) vs. fixed (SHUNTASSISTANT®) gravitational valves in pediatric patients with hydrocephalus: a 16-year retrospective single-center comparative study with biomechanical analysis.
    Issa M; Paggetti F; von Hardenberg A; Miethke C; Unterberg AW; El Damaty A
    Acta Neurochir (Wien); 2023 Dec; 165(12):4031-4044. PubMed ID: 37640980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A clinical audit of the Hakim programmable valve in patients with complex hydrocephalus.
    Kay AD; Fisher AJ; O'Kane C; Richards HK; Pickard JD;
    Br J Neurosurg; 2000 Dec; 14(6):535-42. PubMed ID: 11272031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficacy and safety of the Miethke programmable differential pressure valve (proGAV®2.0): a single-centre retrospective analysis.
    Hall BJ; S Gillespie C; Hennigan D; Bagga V; Mallucci C; Pettorini B
    Childs Nerv Syst; 2021 Aug; 37(8):2605-2612. PubMed ID: 34021371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3T magnetic resonance imaging testing of externally programmable shunt valves.
    Zabramski JM; Preul MC; Debbins J; McCusker DJ
    Surg Neurol Int; 2012; 3():81. PubMed ID: 22937481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.