These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 34787997)

  • 1. Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO
    Roy D; Mandal SC; Pathak B
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56151-56163. PubMed ID: 34787997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Assisted Exploration of High Entropy Alloy-Based Catalysts for Selective CO
    Roy D; Mandal SC; Pathak B
    J Phys Chem Lett; 2022 Jun; 13(25):5991-6002. PubMed ID: 35737450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unravelling CO
    Roy D; Charan Mandal S; Das A; Pathak B
    Chemistry; 2024 Jan; 30(6):e202302679. PubMed ID: 37966848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO
    Müller A; Comas-Vives A; Copéret C
    Chem Sci; 2022 Nov; 13(45):13442-13458. PubMed ID: 36507169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Designing of Bimetallic/Trimetallic Hydrogen Evolution Reaction Catalysts Using Supervised Machine Learning.
    Pandit NK; Roy D; Mandal SC; Pathak B
    J Phys Chem Lett; 2022 Aug; 13(32):7583-7593. PubMed ID: 35950905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the effects of surface Cu coordination environment on CO
    Guan L; Gao Y; Li C; Wang H; Zhang W; Teng B; Wen X
    J Colloid Interface Sci; 2024 Jul; 675():496-504. PubMed ID: 38986323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts for the oxygen reduction reaction.
    Wan X; Zhang Z; Yu W; Niu H; Wang X; Guo Y
    Patterns (N Y); 2022 Sep; 3(9):100553. PubMed ID: 36124306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic theoretical study of CO
    Qin H; Zhang H; Wu K; Wang X; Fan W
    Phys Chem Chem Phys; 2024 Jun; ():. PubMed ID: 38842113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT-based Machine Learning for Ensemble Effect of Pd@Au Electrocatalysts on CO
    Liu F; Gao PF; Wu C; Yang S; Ding X
    Chemphyschem; 2023 Apr; 24(8):e202200642. PubMed ID: 36633526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new and different insight into the promotion mechanisms of Ga for the hydrogenation of carbon dioxide to methanol over a Ga-doped Ni(211) bimetallic catalyst.
    Tang Q; Ji W; Russell CK; Zhang Y; Fan M; Shen Z
    Nanoscale; 2019 May; 11(20):9969-9979. PubMed ID: 31070648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Role of a Ga-Promoter in Ni-Based Catalysts for the Selective Hydrogenation of CO
    Zimmerli NK; Rochlitz L; Checchia S; Müller CR; Copéret C; Abdala PM
    JACS Au; 2024 Jan; 4(1):237-252. PubMed ID: 38274252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of High-Entropy Alloy Catalyst for Ammonia Decomposition and Ammonia Synthesis.
    Saidi WA; Shadid W; Veser G
    J Phys Chem Lett; 2021 Jun; 12(21):5185-5192. PubMed ID: 34038141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the mechanism for the methanol synthesis via the hydrogenation of CO
    Qiu M; Tao H; Li R; Li Y; Huang X; Chen W; Su W; Zhang Y
    J Chem Phys; 2016 Oct; 145(13):134701. PubMed ID: 27782435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ni-Sn-Supported ZrO
    Hengne AM; Samal AK; Enakonda LR; Harb M; Gevers LE; Anjum DH; Hedhili MN; Saih Y; Huang KW; Basset JM
    ACS Omega; 2018 Apr; 3(4):3688-3701. PubMed ID: 31458617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methanol Synthesis from CO
    Shi YF; Kang PL; Shang C; Liu ZP
    J Am Chem Soc; 2022 Jul; 144(29):13401-13414. PubMed ID: 35848119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of Quantum Confinement and Alloy Effect to Modulate Electronic Properties of RhW Nanocrystals for Improved Catalytic Performance toward CO
    Zhang W; Wang L; Liu H; Hao Y; Li H; Khan MU; Zeng J
    Nano Lett; 2017 Feb; 17(2):788-793. PubMed ID: 28055214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogenation of Carbon Dioxide to Methanol over Non-Cu-based Heterogeneous Catalysts.
    Sha F; Han Z; Tang S; Wang J; Li C
    ChemSusChem; 2020 Dec; 13(23):6160-6181. PubMed ID: 33146940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio study of the adsorption properties of CO
    De Sousa RA; Ocampo-Restrepo VK; Verga LG; Da Silva JLF
    J Chem Phys; 2022 Jun; 156(21):214106. PubMed ID: 35676120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing descriptors for CO
    Ray K; Bhardwaj R; Singh B; Deo G
    Phys Chem Chem Phys; 2018 Jun; 20(23):15939-15950. PubMed ID: 29850682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.