These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34788029)

  • 41. Controlled one-sided growth of Janus TiO
    Ge Y; Wang T; Zheng M; Jiang Z; Wang S
    Nanotechnology; 2019 Aug; 30(31):315702. PubMed ID: 30991364
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Asymmetric colloidal motors: from dissymmetric nanoarchitectural fabrication to efficient propulsion strategy.
    Li H; Li Y; Liu J; He Q; Wu Y
    Nanoscale; 2022 May; 14(20):7444-7459. PubMed ID: 35546337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced Propulsion of Urease-Powered Micromotors by Multilayered Assembly of Ureases on Janus Magnetic Microparticles.
    Luo M; Li S; Wan J; Yang C; Chen B; Guan J
    Langmuir; 2020 Feb; ():. PubMed ID: 32023066
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spiropyran-Decorated SiO₂-Pt Janus Micromotor: Preparation and Light-Induced Dynamic Self-Assembly and Disassembly.
    Zhang Q; Dong R; Chang X; Ren B; Tong Z
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24585-91. PubMed ID: 26488455
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors.
    Patiño T; Feiner-Gracia N; Arqué X; Miguel-López A; Jannasch A; Stumpp T; Schäffer E; Albertazzi L; Sánchez S
    J Am Chem Soc; 2018 Jun; 140(25):7896-7903. PubMed ID: 29786426
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Light-harvesting synthetic nano- and micromotors: a review.
    Eskandarloo H; Kierulf A; Abbaspourrad A
    Nanoscale; 2017 Aug; 9(34):12218-12230. PubMed ID: 28809422
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Directed propulsion of spherical particles along three dimensional helical trajectories.
    Lee JG; Brooks AM; Shelton WA; Bishop KJM; Bharti B
    Nat Commun; 2019 Jun; 10(1):2575. PubMed ID: 31189873
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metal organic frameworks decorated with free carboxylic acid groups: topology, metal capture and dye adsorption properties.
    Ahamad MN; Khan MS; Shahid M; Ahmad M
    Dalton Trans; 2020 Oct; 49(41):14690-14705. PubMed ID: 33064787
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bipolar electrochemistry: from materials science to motion and beyond.
    Loget G; Zigah D; Bouffier L; Sojic N; Kuhn A
    Acc Chem Res; 2013 Nov; 46(11):2513-23. PubMed ID: 23719628
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metal-Based Transient Micromotors: From Principle to Environmental and Biomedical Applications.
    Ge H; Chen X; Liu W; Lu X; Gu Z
    Chem Asian J; 2019 Jul; 14(14):2348-2356. PubMed ID: 30908887
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Symmetry-Breaking Synthesis of Multicomponent Nanoparticles.
    Huang Z; Gong J; Nie Z
    Acc Chem Res; 2019 Apr; 52(4):1125-1133. PubMed ID: 30943008
    [TBL] [Abstract][Full Text] [Related]  

  • 52. X-ray-Powered Micromotors.
    Xu Z; Chen M; Lee H; Feng SP; Park JY; Lee S; Kim JT
    ACS Appl Mater Interfaces; 2019 May; 11(17):15727-15732. PubMed ID: 30969101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis.
    Brooks AM; Tasinkevych M; Sabrina S; Velegol D; Sen A; Bishop KJM
    Nat Commun; 2019 Jan; 10(1):495. PubMed ID: 30700714
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-Light-Responsive Quantum Dot Sensitized Hybrid Micromotors with Dual-Mode Propulsion.
    María Hormigos R; Jurado Sánchez B; Escarpa A
    Angew Chem Int Ed Engl; 2019 Mar; 58(10):3128-3132. PubMed ID: 30521672
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Composite Multifunctional Micromotors from Droplet Microfluidics.
    Zou M; Wang J; Yu Y; Sun L; Wang H; Xu H; Zhao Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34618-34624. PubMed ID: 30212179
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Iron-Exchanged Zeolite Micromotors for Enhanced Degradation of Organic Pollutants.
    Ma W; Wang K; Pan S; Wang H
    Langmuir; 2020 Jun; 36(25):6924-6929. PubMed ID: 31657933
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrochemical Deposition Tailors the Catalytic Performance of MnO
    Liu W; Ge H; Gu Z; Lu X; Li J; Wang J
    Small; 2018 Nov; 14(45):e1802771. PubMed ID: 30239129
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Artificial micromotors in the mouse's stomach: a step toward in vivo use of synthetic motors.
    Gao W; Dong R; Thamphiwatana S; Li J; Gao W; Zhang L; Wang J
    ACS Nano; 2015 Jan; 9(1):117-23. PubMed ID: 25549040
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metal-Organic Framework Films and Their Potential Applications in Environmental Pollution Control.
    Ma X; Chai Y; Li P; Wang B
    Acc Chem Res; 2019 May; 52(5):1461-1470. PubMed ID: 31074608
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Breaking symmetry toward nonspherical Janus particles based on polyhedral oligomeric silsesquioxanes: molecular design, "click" synthesis, and hierarchical structure.
    Li Y; Zhang WB; Hsieh IF; Zhang G; Cao Y; Li X; Wesdemiotis C; Lotz B; Xiong H; Cheng SZ
    J Am Chem Soc; 2011 Jul; 133(28):10712-5. PubMed ID: 21682260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.