These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Photophysics of thermally activated delayed fluorescence molecules. Dias FB; Penfold TJ; Monkman AP Methods Appl Fluoresc; 2017 Mar; 5(1):012001. PubMed ID: 28276340 [TBL] [Abstract][Full Text] [Related]
24. Realizing High-Efficiency Orange-Red Thermally Activated Delayed Fluorescence Materials through the Construction of Intramolecular Noncovalent Interactions. Zhao T; Jiang S; Wang Y; Hu J; Lin FL; Meng L; Gao P; Chen XL; Lu CZ ACS Appl Mater Interfaces; 2023 Jun; 15(25):30543-30552. PubMed ID: 37315213 [TBL] [Abstract][Full Text] [Related]
25. Efficient Spin-Flip between Charge-Transfer States for High-Performance Electroluminescence, without an Intermediate Locally Excited State. Zhang D; Jiang S; Tao X; Lin F; Meng L; Chen XL; Lu CZ Research (Wash D C); 2023; 6():0155. PubMed ID: 37250955 [TBL] [Abstract][Full Text] [Related]
26. Solution-processed white OLEDs with power efficiency over 90 lm W Chen L; Chang Y; Shi S; Wang S; Wang L Mater Horiz; 2022 Apr; 9(4):1299-1308. PubMed ID: 35195631 [TBL] [Abstract][Full Text] [Related]
27. Harvesting Triplet Excitons with Exciplex Thermally Activated Delayed Fluorescence Emitters toward High Performance Heterostructured Organic Light-Emitting Field Effect Transistors. Song L; Hu Y; Liu Z; Lv Y; Guo X; Liu X ACS Appl Mater Interfaces; 2017 Jan; 9(3):2711-2719. PubMed ID: 28029040 [TBL] [Abstract][Full Text] [Related]
28. Efficient Direct Reverse Intersystem Crossing between Charge Transfer-Type Singlet and Triplet States in a Purely Organic Molecule. Wada Y; Wakisaka Y; Kaji H Chemphyschem; 2021 Apr; 22(7):625-632. PubMed ID: 33586264 [TBL] [Abstract][Full Text] [Related]
29. Realizing 20% External Quantum Efficiency in Electroluminescence with Efficient Thermally Activated Delayed Fluorescence from an Exciplex. Chapran M; Pander P; Vasylieva M; Wiosna-Salyga G; Ulanski J; Dias FB; Data P ACS Appl Mater Interfaces; 2019 Apr; 11(14):13460-13471. PubMed ID: 30864778 [TBL] [Abstract][Full Text] [Related]
30. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Dias FB; Bourdakos KN; Jankus V; Moss KC; Kamtekar KT; Bhalla V; Santos J; Bryce MR; Monkman AP Adv Mater; 2013 Jul; 25(27):3707-14. PubMed ID: 23703877 [TBL] [Abstract][Full Text] [Related]
31. Thermally Activated Delayed Fluorescence in Polymer-Small-Molecule Exciplex Blends for Solution-Processed Organic Light-Emitting Diodes. Pander P; Gogoc S; Colella M; Data P; Dias FB ACS Appl Mater Interfaces; 2018 Aug; 10(34):28796-28802. PubMed ID: 30044613 [TBL] [Abstract][Full Text] [Related]
32. Impact of secondary donor units on the excited-state properties and thermally activated delayed fluorescence (TADF) efficiency of pentacarbazole-benzonitrile emitters. Cho E; Liu L; Coropceanu V; Brédas JL J Chem Phys; 2020 Oct; 153(14):144708. PubMed ID: 33086823 [TBL] [Abstract][Full Text] [Related]
33. Blue TADF Emitters Based on Lee YH; Lee W; Lee T; Lee D; Jung J; Yoo S; Lee MH ACS Appl Mater Interfaces; 2021 Sep; 13(38):45778-45788. PubMed ID: 34519475 [TBL] [Abstract][Full Text] [Related]
34. The Role of Reverse Intersystem Crossing Using a TADF-Type Acceptor Molecule on the Device Stability of Exciplex-Based Organic Light-Emitting Diodes. Nguyen TB; Nakanotani H; Hatakeyama T; Adachi C Adv Mater; 2020 Mar; 32(9):e1906614. PubMed ID: 31975459 [TBL] [Abstract][Full Text] [Related]
35. Application of the Heavy-Atom Effect for (Sub)microsecond Thermally Activated Delayed Fluorescence and an All-Organic Light-Emitting Device with Low-Efficiency Roll-off. Mońka M; Gogoc S; Kozakiewicz K; Ievtukhov V; Grzywacz D; Ciupak O; Kubicki A; Bojarski P; Data P; Serdiuk IE ACS Appl Mater Interfaces; 2024 Mar; 16(12):15107-15120. PubMed ID: 38497718 [TBL] [Abstract][Full Text] [Related]
36. The Importance of Vibronic Coupling for Efficient Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence Molecules. Gibson J; Monkman AP; Penfold TJ Chemphyschem; 2016 Oct; 17(19):2956-2961. PubMed ID: 27338655 [TBL] [Abstract][Full Text] [Related]
37. Development of an Organic Emitter Exhibiting Reverse Intersystem Crossing Faster than Intersystem Crossing. Okumura R; Tanaka H; Shizu K; Fukushima S; Yasuda Y; Kaji H Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202409670. PubMed ID: 38943493 [TBL] [Abstract][Full Text] [Related]
38. Exciplex Organic Light-Emitting Diodes with Nearly 20% External Quantum Efficiency: Effect of Intermolecular Steric Hindrance between the Donor and Acceptor Pair. Wu TL; Liao SY; Huang PY; Hong ZS; Huang MP; Lin CC; Cheng MJ; Cheng CH ACS Appl Mater Interfaces; 2019 May; 11(21):19294-19300. PubMed ID: 31046225 [TBL] [Abstract][Full Text] [Related]
39. Conformation Control of Iminodibenzyl-Based Thermally Activated Delayed Fluorescence Material by Tilted Face-to-Face Alignment With Optimal Distance (tFFO) Design. Kusakabe Y; Wada Y; Nakagawa H; Shizu K; Kaji H Front Chem; 2020; 8():530. PubMed ID: 32923423 [TBL] [Abstract][Full Text] [Related]
40. Singlet and triplet to doublet energy transfer: improving organic light-emitting diodes with radicals. Li F; Gillett AJ; Gu Q; Ding J; Chen Z; Hele TJH; Myers WK; Friend RH; Evans EW Nat Commun; 2022 May; 13(1):2744. PubMed ID: 35585063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]