These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 34788792)
1. GADGETS: a genetic algorithm for detecting epistasis using nuclear families. Nodzenski M; Shi M; Krahn JM; Wise AS; Li Y; Li L; Umbach DM; Weinberg CR Bioinformatics; 2022 Jan; 38(4):1052-1058. PubMed ID: 34788792 [TBL] [Abstract][Full Text] [Related]
2. EPIQ-efficient detection of SNP-SNP epistatic interactions for quantitative traits. Arkin Y; Rahmani E; Kleber ME; Laaksonen R; März W; Halperin E Bioinformatics; 2014 Jun; 30(12):i19-25. PubMed ID: 24931983 [TBL] [Abstract][Full Text] [Related]
3. Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses. Wongseree W; Assawamakin A; Piroonratana T; Sinsomros S; Limwongse C; Chaiyaratana N BMC Bioinformatics; 2009 Sep; 10():294. PubMed ID: 19761607 [TBL] [Abstract][Full Text] [Related]
4. TSGSIS: a high-dimensional grouped variable selection approach for detection of whole-genome SNP-SNP interactions. Fang YH; Wang JH; Hsiung CA Bioinformatics; 2017 Nov; 33(22):3595-3602. PubMed ID: 28651334 [TBL] [Abstract][Full Text] [Related]
5. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Yang C; He Z; Wan X; Yang Q; Xue H; Yu W Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029 [TBL] [Abstract][Full Text] [Related]
6. SEEI: spherical evolution with feedback mechanism for identifying epistatic interactions. Tang DY; Mao YJ; Zhao J; Yang J; Li SY; Ren FX; Zheng J BMC Genomics; 2024 May; 25(1):462. PubMed ID: 38735952 [TBL] [Abstract][Full Text] [Related]
7. High-throughput analysis of epistasis in genome-wide association studies with BiForce. Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535 [TBL] [Abstract][Full Text] [Related]
8. CINOEDV: a co-information based method for detecting and visualizing n-order epistatic interactions. Shang J; Sun Y; Liu JX; Xia J; Zhang J; Zheng CH BMC Bioinformatics; 2016 May; 17(1):214. PubMed ID: 27184783 [TBL] [Abstract][Full Text] [Related]
9. A Novel Multitasking Ant Colony Optimization Method for Detecting Multiorder SNP Interactions. Tuo S; Li C; Liu F; Zhu Y; Chen T; Feng Z; Liu H; Li A Interdiscip Sci; 2022 Dec; 14(4):814-832. PubMed ID: 35788965 [TBL] [Abstract][Full Text] [Related]
10. EpiGEN: an epistasis simulation pipeline. Blumenthal DB; Viola L; List M; Baumbach J; Tieri P; Kacprowski T Bioinformatics; 2020 Dec; 36(19):4957-4959. PubMed ID: 32289146 [TBL] [Abstract][Full Text] [Related]
11. A Tool for Detecting Complementary Single Nucleotide Polymorphism Pairs in Genome-Wide Association Studies for Epistasis Testing. Caylak G; Tastan O; Cicek AE J Comput Biol; 2021 Apr; 28(4):378-380. PubMed ID: 33325775 [No Abstract] [Full Text] [Related]
12. CMDR based differential evolution identifies the epistatic interaction in genome-wide association studies. Yang CH; Chuang LY; Lin YD Bioinformatics; 2017 Aug; 33(15):2354-2362. PubMed ID: 28379338 [TBL] [Abstract][Full Text] [Related]
13. EpiMC: Detecting Epistatic Interactions Using Multiple Clusterings. Wang J; Zhang H; Ren W; Guo M; Yu G IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):243-254. PubMed ID: 33989157 [TBL] [Abstract][Full Text] [Related]
14. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS. Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779 [TBL] [Abstract][Full Text] [Related]
15. KDSNP: A kernel-based approach to detecting high-order SNP interactions. Kodama K; Saigo H J Bioinform Comput Biol; 2016 Oct; 14(5):1644003. PubMed ID: 27806683 [TBL] [Abstract][Full Text] [Related]
16. Protocol for Construction of Genome-Wide Epistatic SNP Networks Using WISH-R Package. Kadarmideen HN; Carmelo VAO Methods Mol Biol; 2021; 2212():155-168. PubMed ID: 33733355 [TBL] [Abstract][Full Text] [Related]
17. A framework for modeling epistatic interaction. Blumenthal DB; Baumbach J; Hoffmann M; Kacprowski T; List M Bioinformatics; 2021 Jul; 37(12):1708-1716. PubMed ID: 33252645 [TBL] [Abstract][Full Text] [Related]
18. Rapid epistatic mixed-model association studies by controlling multiple polygenic effects. Wang D; Tang H; Liu JF; Xu S; Zhang Q; Ning C Bioinformatics; 2020 Dec; 36(19):4833-4837. PubMed ID: 32614415 [TBL] [Abstract][Full Text] [Related]
19. Utilizing Deep Learning and Genome Wide Association Studies for Epistatic-Driven Preterm Birth Classification in African-American Women. Fergus P; Montanez CC; Abdulaimma B; Lisboa P; Chalmers C; Pineles B IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):668-678. PubMed ID: 30183645 [TBL] [Abstract][Full Text] [Related]
20. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data. Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]